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ABSTRACT
Metal-based electromagnetic interference shielding materials are limited in their application due 
to their susceptibility to corrosion. They are therefore being replaced by corrosion-resistant 
polymers and carbon nanotubes. However, it is difficult to disperse carbon nanotubes within 
polymer matrices as they aggregate because of van der Waals forces. Therefore, to improve the 
dispersion of carbon nanotubes, we modified thin-wall carbon nanotubes with flavin mononucleo-
tides and tested them by manufacturing a polymer composite. Nylon 12 was chosen as the 
polymer matrix owing to its excellent abrasion resistance and low wettability. Furthermore, upon 
annealing the modified carbon nanotubes, the tensile strength of the composite and dispersion 
after modification increased. When 10 wt% of the annealed modified nanotubes was used, the 
composite exhibited a sheet resistance of 8.7 Ω/sq and an EMI shielding effectiveness of 29.4 dB in 
the X-band. The novel composite can be advantageous for use in electronic equipment due to its 
low weight and flexibility.

ARTICLE HISTORY 
Received 18 May 2023  
Revised 8 June 2023  
Accepted 11 June 2023 

KEYWORDS 
Carbon nanotube (CNT); 
Electromagnetic interference 
(EMI) shielding; flavin 
mononucleotide; Nylon 12; 
polymer composite

1. Introduction

Electromagnetic waves interfere with the functioning 
machines through conduction or emission, leading to 
noise and shortening of the equipment lifespan, eventually 
leading to reduced efficiency of the machine.[1] In addition, 
electromagnetic waves negatively affect human health: 

when the human body is exposed to electromagnetic 
waves, the nervous system is stimulated, and in severe 
cases, heart attacks can occur.[2] Therefore, there is 
a need for electromagnetic interference (EMI) shielding 
materials. Such materials are generally manufactured using 
metals; however, their application is limited because they 
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are heavy, difficult to process, and susceptible to corrosion. 
Conductive polymers have therefore been widely investi-
gated as a replacement for metal-based EMI shielding 
materials because they are lighter, easier to process, and 
more resistant to corrosion. EMI shielding by dispersing 
conductive nano-fillers in polymer matrices has also been 
extensively studied.[3,4]

In order to measure EMI, the material must be both 
magnetic and dielectric, capable of reflection and 
absorption.[5] To solve this problem, recently, polymers 
have been blended with conductive materials such as 
carbon nanotubes (CNT) and graphene to produce EMI 
shielding polymer composite films.[6–8] In a previous 
study, researches on compounding polymers and con-
ductive nano-fillers were widely conducted. There is 
a study that lowers the percolation threshold and 
enhances conductivity and mechanical properties by 
making a conductive composite material with PA12, 
Graphene, and POE-g-M by melt compounding method 
with a low percolation threshold of 0.3 vol % and 6.7 ×  
10−2 S/m. Similarly, some investigations are executed to 
improve conductivity using a multi-wall carbon 
nanotube.[9,10] Additionally, studies have been done on 
the creation of conductive polymers using polypropy-
lene (PP) and CNTs with 8 × 10−2 S/m. Li, Xing-Hua 
et al. examined the enhancement of conductivity and 
impact strength by altering CaCO3, an inorganic nano-
particle, and mixing it with PP/CNT in order to improve 
the lower moduli.[11]

Fe/CNT was prepared by Chea and coworkers 
using slurry sheet; however, when the content of 
CNTs exceeded 2 wt%, the dispersion was affected 
and EMI shielding could thus not be performed.[12] 

Moon and team had fabricated CF/PA6 and PC/ABS 
composites with an EMI shielding effect (SE) of 15 dB 
and 12 dB, respectively, at 10 wt% of conductive 
filler.[13] Liu and team reported PU composite films 
with 20 wt% of SWCNT exhibiting EMI SE of 17  
dB.[14] In classical works, EMI shielding measures 
between 150 MHz to 1.5 GHz frequency region; how-
ever, in the current advanced society, several electro-
nic apparatuses are used in the X-band region (8.2  
GHz to 12.4 GHz), as well as in low-frequency 
bands.[14,15]

Numerous studied have modified CNTs using var-
ious organic and inorganic materials[16] to improve 
their EMI properties. Such modification is usually con-
ducted through reforming, which includes chemical 
reforming using a strong acid and mechanical reform-
ing using physical adsorption. Originally, CNT was 
modified with a carboxyl group, specifically with 

COOH. However, these experiments use strong acids, 
which may pose a risk to CNT.[17–19] It may damage the 
conjugate structure of CNTs, and thus the dielectric 
constant can be lowered.

In this study, we fabricated composites of nylon 12 and 
modified-CNTs to test their performances as EMI shield-
ing materials. Nylon 12, was chosen as the matrix material 
owing to its low moisture absorption, as well as it having 
the best abrasion resistance among the nylon series.[20] The 
CNTs were modified with flavin mononucleotide (FMN) 
using a physical adsorption method[21] CNTs were mod-
ified by wrapping them pentadienyl groups through repul-
sive force; pentadienyl groups are hyper-conjugated to 
each other, resulting in improved conductivity.[21–23] 

Furthermore, a group of the modified CNTs also went 
annealing to test their EMI shielding properties when 
dispersed through the composite. Finally, the composites 
of CNTs and nylon 12 were fabricated through melt blend-
ing and hot pressing with 5, 7.5, and 10 wt% content of 
carbon nanotubes and modified carbon nanotubes.

2. Materials and methods

2.1. Materials

8A thin wall carbon nanotubes (CNTs) (diameter: 4–9 nm, 
number of walls: 3–7, purity >98.5 wt%) were obtained 
from JEIO Co., Ltd. (Ansan, Korea). Riboflavin 5’- 
Monophosphate Sodium (FMN, assay 73–79) was pur-
chased from Wuhan Fortuna Chemical Co., LTD. 
(Wuhan, China). The nylon 12 (Polyamide 12, 
AM376045, particle size distribution D50: 90 μm) was pur-
chased from Goodfellow (London, United Kingdom). 
Deionized water was prepared in the laboratory.

2.2. Preparation of modified CNTs

5 g of CNT was homogeneously dispersed within 4 g of 
FMN in 300 ml deionized water at 25°C via ultrasonica-
tion for 10 min. The mixture was then vacuum filtered 
and freeze dried to obtain MCNTs. In addition, MCNTs 
underwent annealing in a furnace at 450°C for 1 h to 
obtain annealed MCNTs (Figure 1), which will hence-
forth be referred to as MCNT(H)s

2.3. Preparation of polymer composite with MCNT 
series and nylon 12

The different types of CNTs and nylon 12 were mixed 
via melt blending at 230°C at 60 rpm using a twin-screw 
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extruder. The composite was then placed in a square sus 
mold, preheated to 230°C for 20 min, and then hot- 
pressed with 2 tons of force for 20 min to obtain the 
composite films (Figure 2). The composites of nylon 12 
with 5, 7.5, and 10 wt% CNT have been abbreviated to 
CNT 5, CNT 7.5, and CNT 10, respectively. The nylon 
12 composites containing MCNT and MCNT(H) were 
also similarly manufactured and abbreviated.

2.4. Characterization

Zeta Potentiometer (ELSZ −1000) was used to charac-
terize the dispersion of CNT, MCNT and MCNT(H). 
Thermogravimetric analysis (TGA) was performed with 
a TA instrument (Q500, USA) under a nitrogen atmo-
sphere; for the analysis, 5 mg of the CNT series was 
heated at a heating rate of 20°C/min from 25 to 800°C. 
The cross-section morphologies of the composite films 
were observed using a field emission scanning electron 
microscope (FESEM, SU − 8010, Hitachi, Japan). The 
mechanical properties of the composite films were 
investigated according to ASTM D 882 using 
a universal testing machine (UTM, Instron 3342, 
USA). Specimens of the sample film were of the size 

20 × 100 mm. The sheet resistance was measured using 
a non-contact sheet resistance meter (TP lab 2020, 
SARAGUS, Germany). The specimen of the sample 
was manufactured in a rectangular shape with a size of 
100 × 100 mm, and was measured using a non-contact 
measuring instrument of SRAGUS. Samples were mea-
sured 10 times at ambient temperature. The electroche-
mical impedance spectroscopy (EIS) analysis were 
performed with ZIVE sp2 (Wonatech, Korea), and elec-
tromagnetic interference (EMI) was measured using 
Network Analyzer E8364B (Agilent, USA).

3. Results and discussion

3.1. Characterization of modified CNT

According to the TGA results (Figure 3), the mass of 
MCNTs decreased at 290 and 450°C, which corre-
spond to the dihydroxylation and dephosphorylation, 
respectively, of the d-ribityl phosphate. In contrast, 
a decrease in the mass of MCNT(H)s occurred at 
around 60°C, revealing that dephosphorylation had 
already occurred during the annealing process, which 
led to dehydration and evaporation. The results 
therefore verify that FMN was adsorbed on the 

Figure 1. CNT modification with flavin mononucleotide.

Figure 2. Schematic illustration of preparation procedure of the MCNT(H)-nylon12 composite film.
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MCNTs and MCNT(H)s. Additionally, it was deter-
mined that the thermal stability of MCNT and 
MCNT(H) was improved.[21]

The results of zeta potential measurement are 
shown in Figure 4(a). At a zeta potential value of 
−10 mv, the CNTs try to coagulate with each other 
due to the van der walls force. The dispersibility is 
good when it falls within the range of − 40 and −60  
mv. This is as a result of the CNT-wrapped FMN 
being forced out by a repulsive force.[24] Thin wall 
CNTs have good conductivity and dispersibility, and 
are sufficient to replace single walls. However, 
MCNT dispersibility is not good because CNT and 
FMN play separately unless annealing is performed 
when modified with FMN. If the FMN wraps around 
the CNT by annealing, a repulsive force is generated 
and the dispersibility is improved. It can be seen that 
the conductivity value of CNT is improved as it is 
modified to 0.0033 mS/cm, MCNT 0.0044 mS/cm, 
and MCNT(H) to 0.0049 mS/cm, respectively.

MCNT(H)s had the best dispersibility but the 
lowest conductivity (Figure 4(b)). However, the dif-
ference in conductivity is negligible, as the values of 

Figure 3. Thermogravimetric analysis (TGA) of MCNT and MCNT(H).

Figure 4. (a) Zeta potential distribution of CNT, MCNT, MCNT(H) in 0.1 wt% in ethanol (b) Zeta potential and electrical conductivity (c) 
aqueous distribution of CNT after sonication.
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the conductivity are low. In addition, CNTs, 
MCNTs, and MCNT(H)s were dispersed in ethanol 
at a concentration of 0.1 wt% for 1 h under ultra- 
sonication. Photographs were taken after duration 
of 0 min, 24 h, and 48 h, and it was observed that 
CNTs were and MCNT(H)s were well-dispersed; in 
contrast, MCNTs aggregated. Therefore, we could 
conclude that the FMN wrapped around the CNTs, 
creating a repulsive force between them that pre-
vented aggregation and promoted dispersing.

3.2. Characterization and properties of 
CNT-nylon12 composite film

The cross-sectional image of the MCNT-nylon 12 
composite film is shown in Figure 5. It can be 
observed from the morphology of the composite 

film that the CNTs were well-dispersed throughout 
the nylon 12 matrix. Although the distance between 
the CNTs depended on their content in the compo-
site, the tendency to aggregation did not increase 
with increasing CNT content. Therefore, the CNT 
successfully dispersed in the nylon 12 matrix.

Table 1 lists the mechanical properties of the 
CNT and nylon 12 composite films. The elongation 
of the composites shows the lowest value 4.5% at 5  
wt% CNT content. Modulus can be confirmed to be 
the lowest at 296.1 MPa. It was observed that the 
higher the MCNT(H) content, the lower the elonga-
tion and the higher the modulus value. The tensile 
properties tended to increase with decreasing 
MCNT content. This is because, as the content of 
MCNTs increases between nylons, FMN reacts with 
oxygen in the air inside the nylon matrix and dehy-
drogenases through oxidation/reduction reactions, 

Figure 5. SEM images of composite film (a) CNT 5 wt%, (b) CNT 7.5 wt%, (c) CNT 10 wt%, (d) MCNT 5 wt%, (e) MCNT 7.5 wt%, (f) MCNT 
10 wt%, (g) MCNT(H) 5 wt%, (h) MCNT(H) 7.5 wt% (i) MCNT(H) 10 wt%.
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which interferes with the binding of nylon. At 10 wt 
% of MCNT(H), the modulus was the highest at 452 
MPa, and the tensile strength gradually decreased, 
which is similar to the 5 wt% composite.

The TGA data of the composite films are shown in 
Figure 6. The slight loss in mass at around 100°C for all 
the composites is attributed to the evaporation of 
absorbed water. It is expected that the loss in mass 
that occurred between 100–300°C was due to the 
removal of oxygen-containing groups on the surface. 
In other words, a slight decrease in mass occurs because 
the moisture inside the nylon evaporates. The weight 
loss of the composite films increased with increasing 
MCNT content; and using MCNT(H).

A non-contact sheet resistance meter was used to 
measure the sheet resistance of the composite films; 
the results are shown in Figure 7(a) and Table 2. 5  
wt% CNT had the highest resistance value of 47.3 
Ohm/sq, and 10 wt% MCNT(H) had the lowest resis-
tance value of 8.7 Ohm/sq. It was confirmed that the 
higher the CNT content, the better the electrical 
conductivity and the lower the resistance. In 

addition, FMN played a role in transmitting electri-
city, so 10 wt% MCNT(H) showed a low resistance 
value. At the same content, the resistance decreased 
in the order of CNT > MCNT > MCNT(H), con-
firming that the conductivity improved due to lower 
resistance than pure CNT. In addition, it was con-
firmed that the red LED emits light at MCNT(H) 10  
wt%, which has the lowest resistance as shown in 
Figure 7(b).

EMI shielding effectiveness (SE) is measured by 
testing how much incident light is blocked. The 
mechanism of EMI SE involves the reflection and 
absorption of electromagnetic (EM) waves. EM 
waves are attenuated in EMI shields through loss 
of electric and magnetic dipoles.[25,26] EMI SE 
obtained via parameter SEtotal (SET), SEreflection 

(SER) and SEabsorption (SEA). EMI shielding effi-
ciency (SE) is obtained as the sum of SE of reflec-
tion and absorption. 

T and R represent reflection and transmission, respec-
tively, and are obtained by 2 and 3. 

If the EMI SE is 10 dB, it represents that 90% of electro-
magnetic waves are shielded, 15 dB corresponds to 95%, 
and 20 dB to 99%.[27–29] Figure 8. shows the EMI SE 
according to the frequency, and Table 3. shows the 
average EMI SE value of the 8–12 GHz frequency band 
(X-band) of the composite films. In previous studies, 
when composites of CNTs (or inorganic substances)  

Figure 6. Thermogravimetric analysis (TGA) of MCNT and 
MCNT(H)-nylon composite film.

Table 1. According to CNT contents mechanical properties of composite film.
Sample (wt%) Elongation at max (%) Elastic Modulus (MPa) Tensile Strength (MPa)

Nylon12 3.9 4.6 7.1
CNT 5 4.5 296.1 6.2
CNT 7.5 1.6 43.4 6.5
CNT 10 2.6 396.3 5.9
MCNT 5 4.6 424.7 8.8
MCNT 7.5 1.2 333.6 4.4
MCNT 10 0.3 379.9 1.2
MCNT(H) 5 3.5 401.9 7.6
MCNT(H) 7.5 2.4 419.6 6.6
MCNT(H) 10 2.4 452.0 7.3
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and polymers had a conductive filler content of 10 wt%, 
the EMI values were 15 dB and 12 dB for CF/PA6 and 
PC/ABS, respectively[11]; even a conductive filler con-
tent of 20 wt% did not result in a shielding effect exceed-
ing 17 dB.[12] In this study, the EMI SE value increased 
with increasing CNT content in the composites. The 
EMI SE of CNT-based composites showed correlation 
between electromagnetic shielding and the contents of 
CNT as shown in Figure 8(b). The difference between 
(c) and (d) in Figure 8 is due to the dispersibility and 
surface resistance. This is because FMN was well 
adsorbed to CNTs during annealing, and dispersion 
was better at uniform intervals inside the nylon matrix, 
which had good conductivity. This is because the sur-
face resistance of MCNT(H) is smaller than that of 
MCNT. At 10 wt% of MCNT(H) in the composite, the 
average value of the X-band was 29.4 dB, and the EMI 
SE increased with increasing frequency (Figure 8(d)). In 
addition, the highest SE value obtained by the 10 wt% of 
MCNT(H) was 36.1 dB, confirming that electromag-
netic shielding effectiveness was sufficient even at high 
frequency. Even with the same material, the EMI is 
different depending on the content and resistance. 
CNT and MCNT(H) show similar degrees depending 

on the resistance value. On the other hand, MCNT was 
increased at 5 and 7.5 wt% compared to both samples, 
but was measured to be 17.9 dB at 10 wt%. Because the 
content of FMN is increased, it is not mixed with CNT, 
causing deterioration of physical properties and 
properties.

To confirm the electrochemical properties of the 
composites, the electrochemical impedance of the 
samples with the highest CNT content (10 wt%) was 
measured. Figure 9. shows the Nyquist plot of each 
composite film (CNT 10, MCNT 10, and MCNT(H) 
10) and is characterized by a circular arc in the fre-
quency range of 1–100 MHz at a potential of 100 mV. 
The resistance is 11.2, 10.3, and 8.7 Ohms/sq, respec-
tively; we could confirm that the diffusion of ions did 
not occur, as the resistance charge transfer is seen 
only in the semicircular region, which increases stee-
ply in the high-frequency region and gradually 
decreases at the low frequency. Furthermore. there is 
no Warburg tail. Therefore, only the degree of resis-
tance could be analyzed. The semicircular region 
represents the product of resistance and capacitor, 
and in the case of MCNT, it can be seen that FMN 
does not mix well, so the interfacial resistance is large. 

Figure 7. (a) Sheet resistance values and (b) LED testing of composite films.

Table 2. According to CNT content sheet resistance value.
Sheet resistance value (sample size 100x100mm)                                                                          

Content (wt%) CNT (Ω/sq) MCNT (Ω/sq) MCNT(H) (Ω/sq)

5 47.3 40.3 41.9
7.5 36.4 23.9 19.7
10 11.2 10.3 8.7
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It can be seen that the MCNT(H) is larger than that of 
CNT, and it is mixed properly and the surface resis-
tance is increased by wrapping the CNT surface with 
an isoalloxazine ring.

It is expected that the composites can be applied to 
various applications because of their light weight and 
flexibility, as shown in Figure 10(a,b). In addition, owing 
to the low moisture absorption exhibited by nylon, the 
EMI shielding properties of the CNTs are expected to 
withstand sweat from the body without breaking down 
even when utilized in wearable electronic devices.

4. Conclusions

CNT-based nylon 12 composites were manufactured to 
investigate their EMI SE properties. In order to disperse 
CNT within the composites, CNTs were modified using 
riboflavin 5’-monophosphate sodium. Composite films for 
each type of carbon nanotubes were fabricated with vary-
ing amounts of CNTs (5, 7.5, and 10 wt%). The mechanical 
and electrical properties were measured. The composite 
using 10 wt% of MCNT(H) showed well-dispersed despite 
increasing MCNT(H) content, and the tensile strength was 
improved compared to the CNT-nylon 12 composite. 
Furthermore, the resistance decreased to 8.7 Ohm/sq. In 
the case of EMI measurement, the incident wave blocking 
rate was the highest at 29.4 dB in the X-band for the 
MCNT(H) 10 wt%. Through this, when the CNTs were 
modified, it was confirmed that the annealed MCNTs (H) 
had superior mechanical properties and electrical proper-
ties than the MCNTs. Furthermore, MCNT(H) has 

Figure 8. Electromagnetic interference shielding effect of CNTs composite films (a) electromagnetic shielding scheme, (b) EMI SE of 
CNT, (c) EMI SE of MCNT, and (d) EMI SE of MCNT(H) composite films.

Table 3. Average dB value of in the X-band frequency range.
Frequency Range 8–12 GHz (X-band) EMI SE                    

Content (wt%) CNT(dB) MCNT (dB) MCNT(H) (dB)

5 12.5 12.7 12.4
7.5 13.9 18.3 15.7
10 29.2 17.9 29.4
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improved mechanical properties and electrical properties 
than when it has the same content as CNT, which can 
reduce costs because almost half of FMN is used.
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