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A B S T R A C T

Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in
brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus,
and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromato-
graphy-electrospray ionization-tandem mass spectrometry in the current study. For 8 weeks, two groups of 5-
week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups,
respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then
subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids
identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions
that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in
all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphati-
dylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were sub-
stantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further,
weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain
without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid
levels upon HF diet analyzed either by lipid class and molecular levels.

1. Introduction

Lipids play an essential role, not only in energy storage and the
formation of cellular membrane structures, but also in cell signaling,
proliferation, and apoptosis [1,2]. Recent studies demonstrated that
lipid profile perturbations are related to the pathogenesis of metabolic
diseases like obesity, diabetes, coronary artery diseases, cancers, and
rare diseases [3–6]. Moreover, lipids play an important role in neuronal
(nerve cells) function in the brain [7]. Thus, lipidomic analysis in re-
lation to brain disorders has gained attention.

The brain is one of the most complex organs belonging to the central
nervous system and is involved with perception, learning and memory,
motion, and metabolic activities, which result from the communication
between neurons in the brain, via a combination of electrical and
chemical signals [8,9]. Due its important role, brain dysfunction may
cause serious illness that deteriorates the quality of life. Recently, al-
terations in lipid levels in the brain have been reported as risk factors
for neurodegenerative disorders, such as Alzheimer's disease, Hun-
tington's disease, and Parkinson's disease [10–12]. Several studies de-
monstrated decreased levels of sphingomyelins (SMs) and
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polyunsaturated fatty acid (PUFA), and increased levels of ceramides
and oxidative products, including unsaturated aldehydes, as a result of
enhanced lipid peroxidation in Alzheimer's disease [13–16]. There is
also evidence that the lipid composition of the brain may influence
perception and emotional behavior, which may lead to depression and
anxiety disorders [12,17,18]. Lipidomic analysis revealed highly
abundant plasma levels of phosphatidylcholine (PC) and triacylglycerol
(TAG), in general, and a significant increase in TAGs containing two or
three saturated fatty acyl chains, in particular, in patients with hy-
pertension [19]. Studies suggest that the alterations in the composition
of brain lipids can be caused by long-term changes in diet [17]. Further,
animal studies demonstrated that a lack of n-3 PUFA in the brain can
induce depression or anxiety related behavior [20,21]. Therefore, al-
tered lipid metabolism in the brain may be a critical factor in central
nervous system injuries and the effect of diet on lipidomic propagations
in the brain is of importance to understanding brain disorders and its
possible prevention with the help of healthy foods.

The food we eat contains lipids, particularly fats that include TAGs,
cholesterol, and phospholipids (PLs) that contain fatty acids (FAs).
Although saturated and monounsaturated FAs are synthesized within
the brain, some PUFAs such as linoleic acid, α-linoleic acid, arachidonic
acid, and docosahexaenoic acid (DHA) need to be supplied through the
diet via the blood [22,23]. DHA plays a role in learning and memory
and has been reported to promote neuronal survival and neurogenesis
[24,25]. It may have preventive or therapeutic roles in Alzheimer's
disease and depression [26,27]. A HF diet, however, is generally rich in
saturated fats and is known to induce obesity, cognitive impairment,
and neurodegenerative diseases [28]. Studies demonstrate that an HF
diet can impair neurogenesis through lipid peroxidation and decrease
brain-derived neurotropic factor [28], induce anxiety disorder [29],
and is associated with the decrease in the volume of the hippocampus,
which plays a role in learning, memory, and mood regulation [30].
Moreover, chronic consumption of an HF diet causes diet-induced
obesity, resulting in insulin resistance in neurons of the hypothalamus,
i.e., the main area controlling energy intake and consumption [31].
Although the effect of an HF diet on brain health has been studied in
pathogenesis, the relationship between an HF diet and lipidomic
changes in the brain has not been widely examined, except in a few
studies on mice, which analyzed the effect of an HF diet on hypotha-
lamic lipid accumulation [32] and on cerebral lipid species in com-
parison to plasma lipids [33].

Lipids are classified with the following categories: PLs, glycer-
olipids, sphingolipids, sterols, FAs, prenols, etc. Due to the complexity
in their molecular structure, including differences in the polar head
group, length of fatty acyl chain, degree of unsaturation, and sub-
stitutions with glycans, lipid analysis often requires a comprehensive
analytical approach. Recently, liquid chromatography (LC) combined
with electrospray ionization-tandem mass spectrometry (ESI-MS/MS),
facilitated the simultaneous separation and structural determination of
intact lipid molecules from plasma or urine samples of patients with
various diseases, including colorectal cancer, breast cancer, and dia-
betes [34–37]. Incorporation of capillary LC at nanoflow regime em-
powered the capability of lipidomic analysis to be performed at low
fmol levels [38,39], with high-speed targeted quantitation (< 20min)
of> 300 lipid molecules [40]. In our laboratory, it has been powerfully
applied to study lipidomic alterations in plasma and urine of patients
with Gaucher disease [6], skeletal muscles from diabetic rats after ex-
ercise [41], internal organs and brain tissues mice after p53 knockout
[42,43], and urinary exosomes of patients with prostate cancer [44].

In the current study, the effect of an HF diet on the lipid profile of
four different brain regions (i.e., the cortex, hippocampus, hypotha-
lamus, and olfactory bulb) of mice were comprehensively examined at
the molecular level. The present study not only profiled the mouse li-
pidome with an 8-week HF diet (F) or normal diet (N), but also ex-
amined systematic differences by varying the periods of the HF diet as
shown in Fig. 1. The lipidomic analysis was first conducted with non-

targeted identification of lipid molecular structures using nanoflow
ultrahigh pressure LC-ESI-tandem MS (nUPLC-ESI-MS/MS), followed by
high-speed targeted quantification of individual lipid samples using the
selected reaction monitoring (SRM) method. From the statistical eva-
luation of quantified data, differences of lipid profiles among different
brain tissues were investigated at the level of lipid classes. The effect of
the HF diet on the lipidome were examined at both the lipid class and
molecular levels, in the different brain regions, according to the dif-
ferent diet programs, including weight gain, weight maintenance, and
weight cycling.

2. Materials and methods

2.1. Reagents

A total of 40 lipid standards were utilized for optimization of
nUPLC-ESI-MS/MS run conditions as follows: 16:0-lysopho-
sphatidylcholine (LPC), 17:0-LPC, 12:0/12:0-phosphatidylcholine (PC),
13:0/13:0-PC, 18:1/18:0-PC, 18:0-lysophosphatidylethanolamine
(LPE), 17:1-LPE, 12:0/12:0-phosphatidylethanolamine (PE), 14:0/14:0-
PE, 17:0/17:0-PE, 18:0/22:6-PE, 18:0p/22:6-PE plasmalogen (PEp),
14:0-lysophosphatidylglycerol (LPG), 17:1-LPG, 18:0-LPG, 12:0/12:0-
phosphatidylglycerol (PG), 15:0/15:0-PG, 16:0/16:0-PG, 16:0/18:2-
phosphatidylinositol (PI), 17:0/20:4-PI, 17:1-lysophosphatidylserine
(LPS), 18:1-LPS, 14:0/14:0-phosphatidylserine (PS), 17:0/20:4-PS,
17:0-lysophosphatidic acid (LPA), 18:0-LPA, 14:0/14:0-phosphatidic
acid (PA), 17:0/17:0-PA, 17:0/17:0 D5-diacylglycerol (DAG), 18:1/
18:1-DAG, 17:0/17:1/17:0 D5-triacylglycerol (TAG), 54:1(18:0/18:1/
18:0)-TAG, d18:1/17:0-Ceramide (Cer), d18:1/22:0-Cer, d18:1/12:0-
monohexosylceramide (MHC), d18:1/17:0-MHC, d18:1/16:0-sphingo-
myelin (SM), d18:1/17:0-SM, d18:1/17:0-sulfatide (ST), and d18:1/
24:0-ST. Lipids with odd numbered fatty acyl chains were used as in-
ternal standards (ISs) added to brain tissue lipid extracts for targeted
quantification. Lipids were purchased from Avanti Polar Lipids Inc.
(Alabaster, AL, USA) and Matreya, LLC (Pleasant Gap, PA, USA). HPLC
grade solvents (i.e., CH3OH, H2O, CH3CN, isopropanol (IPA), and me-
thyl-tert-butyl ether (MTBE)) were purchased from AvantorTM
Performance Materials (Center Valley, PA, USA). NH4HCO2, NH4OH,
and CHCl3 were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Fused silica capillary tubes with inner diameters of 20, 50, and 100 μm
(360 μm outer diameter for all) were purchased from Polymicro
Technology, LLC (Phoenix, AZ, USA). Packing materials used for LC
columns, i.e., Watchers® ODS-P C-18 particles (3 μm and 100 Å), were
purchased from Isu Industry Corp. (Seoul, Korea), while 1.7 μm ethy-
lene bridged hybrid (BEH) particles unpacked from ACQUITY UPLC®
BEH C18 column (2.1mm×100mm) were purchased from Waters™
(Milford, MA, USA).
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Fig. 1. A total of 6 different mouse groups were analyzed in this current study,
based upon the diet program (i.e., a high-fat [F] or normal [N] diet), as follows:
F, N, FNF, NNF, FNN, and NNN.
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2.2. Animals

Four-week-old male C57BL6/N mice were purchased from Central
Lab. Animal Inc. (Seoul, Republic of Korea) and maintained in the an-
imal facility at Korea Mouse Phenotyping Center (KMPC), Seoul
National University. The animals were housed at 24 ± 2 °C with a 12-h
light/dark cycle and fed with a normal diet (NIH-31 chow diet from
Zeigler Bros, Inc. (Gardners, PA, USA)) ad libitum, along with tap
water, before beginning the dietary experiments. Mice were fed with
the dietary programs outlined shown in Fig. 1. For the first 8 weeks, the
mice were fed either a normal diet (N group or control-8) or HF diet (F
or weight gain-8). For the HF diet, 60% kcal% fat, #D12492 Research
Diets (NJ, USA) were used. Details of dietary nutrient composition are
in Table S1. For the next 4 weeks, both groups were fed a normal diet.
Then, each group was further divided into two sub-groups and fed ei-
ther a normal or HF diet for 4 weeks. Thus, the 6 groups analyzed in the
current study were as follows: N, F, NNN (control-16), NNF (weight
gain-16), FNN (weight maintenance), and FNF (weight cycling). Tissue
samples from four different brain regions (i.e., the cortex (Co), hippo-
campus (Hip), hypothalamus (Hyp), and olfactory bulb (OB)) were
obtained from the mice (n=6) at each dietary stage. The animals were
sacrificed using CO2 exposure. All animal experiments in the current
study were conducted according to the ‘Guide for Animal Experiments,’
edited by Korean Academy of Medical Sciences, and were approved by
the Institutional Animal Care and Use Committee of Seoul National
University (Permit Number: SNU-140205-2-1). Details of extracting
mice organs were as follows. Mice were perfused after anesthesia for
sample quality control. After removing the blood from the body
through perfusion, brain samples were taken immediately. The brain
was classified according to the anatomical shape. First, the olfactory
bulb was sampled from whole brain followed by the cortex. Hippo-
campus attached to the cortex was separated and hypothalamus was
finally isolated. All the sampling procedures were performed in the
same order, and the time difference between each sample was not large
because we processed the brain as quickly as possible at the moment of
extraction. All samples were placed in liquid nitrogen immediately after
removal in order to minimize sample damage. The blood plasma, adi-
pose tissue, and liver were sampled from the same mice. Glucose and
cholesterol levels in the blood were measured according to the litera-
ture [45].

The weights, blood glucose level, and total cholesterol level of the
mice were measured and plotted in Fig. S1 (see Supplementary mate-
rial). For histopathological examination, each organ was weighed and
fixed with 4% paraformaldehyde overnight at room temperature, pro-
cessed for paraffin sectioning at 4-μm thickness, and stained with he-
matoxylin and eosin, according to standard procedures. For lipid de-
tection in liver tissue, the sections were washed once with 50%
isopropyl alcohol and stained with Oil Red O. Tissue sections were
analyzed using an optical microscope equipped with a DP71 digital
camera from Olympus (Tokyo, Japan).

2.3. Extraction of lipids from brain tissues

A total of 144 tissue samples (i.e., four different brain regions and
six different mice groups, with n=6 per group) were examined in the
current study. Lyophilized brain tissue samples were pulverized into
powder to make homogenized mixtures. For non-targeted lipid identi-
fication, 0.5mg of the individual powder tissue sample (n= 6) from
each NNN and FNF group were pooled together to make 3mg of pooled
sample for each tissue type. For targeted lipid quantification, 3mg of a
pooled sample for each brain region was used for lipid extraction. Lipid
extraction of the tissue samples were conducted by the two stage ex-
traction method with MTBE/CH3OH [46]. The reason of pooling brain
tissues was due to the limited amounts of hypothalamus and olfactory
bulb from each animal which were less than minimum weight (3 mg)
required for lipid extraction and lipidomic analysis in our lab. The

pooled tissue sample (3mg) was dissolved in 300 μL of CH3OH and
placed in an ice bath for 10min. MTBE (1mL) was added to the mixture
and vortexed for 1 h. Then, 250 μL of MS-grade H2O was added and the
mixture was vortexed again for 10min at room temperature. The final
mixture was centrifuged at 1000×g for 10min and the upper organic
layer was transferred to a new tube. A total of 300 μL of CH3OH was
added to the remaining lower layer, followed by a tip-sonication for
2min and centrifugation at 1000×g for 10min. The resulting organic
layer was mixed with the previously collected organic extract. The or-
ganic solvent in the mixture was evaporated by vacuum overnight.
During evaporation, the tube was wrapped with 0.45 μm MillWrap
PTFE membrane from Millipore (Bedford, MA, USA) to minimize the
loss of lipids by ejection from the tube. Dried lipids were weighed and
dissolved in CHCl3:CH3OH (2:8, v/v) for storage at −80 °C. For nLC-
ESI-MS/MS analysis, each lipid sample was diluted to a lipid con-
centration of 5 μg/μL in CH3OH:H2O (9:1, v/v).

2.4. Nanoflow LC-ESI-MS/MS of lipids

The analytical columns were prepared using a fused capillary tube
(100 μm I.D.) by pulling one end of a silica tube with flame to make a
sharp needle for a direct ESI emitter. The column was packed with
Watchers® ODS-P C18 particles (3 μm), for the first 0.5 cm from the
pulled tip to make self-assembled frit, and with BEH particles (1.7 μm),
for the remaining 7 cm, under nitrogen gas at 1000 psi. The same
column was utilized throughout the experiment for both qualitative and
quantitative analyses. The column was connected between the UPLC
pump and MS system via PEEK micro-cross from IDEX Health & Science
(Oak Harbor, WA, USA), of which three remaining ports were linked to
a Pt wire for ESI voltage, a capillary tubing (50 μm I.D.) from UPLC
pump, and a pressure capillary (20 μm I.D.), which was connected to an
on/off switching valve to split pump flow. The mobile phase solutions
for A and B were (9:1, v/v) H2O:CH3CN and (2:2:6, v/v/v)
CH3OH:CH3CN:IPA, respectively, which were added with 0.05%
NH4OH and 5mM NH4HCO2 as the mixed ionization modifier.

We employed two nanoflow LC-ESI-MS/MS systems: one for non-
targeted lipid identification and the other for targeted quantitative lipid
analysis. In non-targeted analysis, molecular structure of lipid species
was identified by collision induced dissociation (CID) experiment. For
targeted quantitation, selected reaction monitoring (SRM) method
based on triple quadrupole MS system was employed to quantify the
selected lipid species based on non-targeted analysis results. A Dionex
Ultimate 3000 RSLCnano System with an autosampler coupled with
LTQ Velos ion trap mass spectrometer from Thermo Scientific™ (San
Jose, CA, USA) was used for non-targeted qualitative lipid analysis. A
total of 10 μg of lipid extract sample was loaded to the analytical
column with mobile phase A, at 650 nL/min for 10min, with the
switching valve off. Then, the UPLC pump flow rate was increased to
8.5 μL/min, with the switching valve on, so that only 300 nL/min of
flow entered the column. A high speed pump flow up to the micro-cross
was used to reduce dwell time. Gradient elution-I was initiated by
ramping mobile phase B to 55% for 1min, increasing it to 75% for
10min, then 85% for 10min and 99% for 15min, before being main-
tained at 99% for 10min. It was then decreased to 1% B and re-equi-
librated for 10min before the next run. The ESI voltage was set to
3.0 kV and 40% normalized collision energy was used for data depen-
dent CID analysis. The m/z range of a precursor MS scan was
300–1200 amu. The lipids were identified by LiPilot, a computer soft-
ware program that determines lipid molecular structures from CID
spectra, which was developed in our laboratory [47].

A nanoACQUITY UPLC system with an autosampler from Waters™
(Milford, MA, USA), equipped with a TSQ Vantage triple-stage quad-
rupole MS system from Thermo Scientific™, was used with the SRM
method for targeted quantification of lipids. The lipid extract sample for
quantification was added with a mixture of 18 ISs (1 pmol each per
10 μg of each lipid extract sample) and the mixture was loaded to the
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analytical column (same as the above) at 1 μL/min using mobile phase
A for 10min. During lipid quantification, the pump flow rate was set to
15 μL/min with the split valve on and the column flow rate was ad-
justed to 300 nL/min by controlling the length of pressure capillary
tube. Gradient elution-II was initiated with the mobile phase B to 60%
for 1min, ramped to 75% for 2min, 80% for 3min, 90% for 5min, and
then to 100% for 5min. It was maintained at 100% B for 10min and
resumed to 100% A for 5min of column re-conditioning. SRM-based
quantification was performed by analyzing precursor and product ions
in data-dependent CID experiments. The SRM analysis was accom-
plished in positive and negative ion modes alternatively, using a scan
width at m/z 1.5, scan time at 0.001 s, and ESI voltage of 3 kV. The LPC,
PC, LPE, PE, PEp, DAG, TAG, Cer, SM, MHC, and ST lipid classes were
analyzed in the positive ion mode, while the LPG, PG, LPI, PI, LPS, PS,
LPA, and PA were analyzed in the negative ion mode. The CID energy
specific to lipid class was as follows: 20 V for LPE, PE, and Pep; 25 V for
DAG and TAG; 30 V for Cer and MHC; 35 V for LPG, PG, LPI, PI, LPS, PS,
LPA, and PA; 40 V for LPC, PC, and SM; and 50 V for ST. Lipids were
quantified by calculating the corrected peak area, i.e., the ratio of peak
area of a species to that of the IS specific to each lipid class. Since the
concentration of each IS was adjusted to 1 pmol per injection, the
corrected peak area value of each lipid molecule was considered as
close to the pmol amount under the assumptions that MS intensity of
lipids in this study was not significantly affected by the length of acyl
chain and degree of unsaturation. The statistical analyses of the data
were performed with Student's t-test using SPSS software (version 20.0,
IBM Corp., Armonk, NY, USA), and principal component analysis (PCA)
using Minitab 17 statistical software (http://www.minitab.com).

3. Results

3.1. Weight change and histology

The change in body weight plotted in Fig. S1a, demonstrated weight
gain in mice fed with a HF diet (i.e., in the F, NNF, and FNF, groups).
The FNN group gained weight from 20.8 g to 43.6 g during the first
8 weeks of HF diet, and then reduced to 34.0 g during the normal diet
for 8 weeks, eventually recovering to a weight similar to that of NNN. A
characteristic result was that mice in the FNF, in particular, gained
more weight than those in the NNF group that did not undergo weight
loss before the HF diet. When the FNF group undergoing HF diet for the
first 8 weeks were compared with the NNFs that had a normal diet, the
final weight of the FNF was 46.3 g and the NNF was 42.2 g, which
showed a large difference (p < 0.05). Therefore, it can be thought that
the influence of yo-yo phenomenon was critical. The levels of fasting
blood glucose and total cholesterols were significantly increased in the
FNF group more than in the NNF group, as shown in Fig. S1b and S1c.
Moreover, histopathological examination of liver sections revealed that
FNF mice accumulated lipid droplets, resembling macro- and micro-
vesicular steatosis, in their livers (Fig. S1d and S1e). In addition, the
size of the adipocytes was significantly increased in the FNF group
compared to the NNF group (Fig. S1f). Taken together, these findings
demonstrated that weight regain after weight loss negatively affected
metabolic health, in comparison to simple weight gain.

3.2. Lipid profiling in brain tissue

From non-targeted lipid analysis of the four brain regions, a total of
359 lipids from 19 lipid classes, including PLs, LPLs, PEp, DAG, TAG,
ST, SM, and Cer were identified with individual molecular structures
using nUPLC-ESI-MS/MS. Representative base peak chromatograms of
the tissue samples from the NNN (control) and FNF (weight cycling)
groups, shown in Supplementary Fig. S2, demonstrate significant dif-
ferences in peak profiles between the two extreme diet groups. The
performance of lipid separation employed in this nUPLC experiment
was demonstrated by the separation of lipid standards in both positive

and negatives ion mode during MS detection (Fig. S3). The run condi-
tions that were employed offered high-resolution separation, which
enabled regioisomers of each lysophospholipid (peaks 1–2 in positive
and peaks 1–4 in negative ion runs) to be distinguished (Fig. S3). The
measured peak widths of entire lipid standards were 0.4–0.8min.
Molecular structures of identified lipids from brain tissues are listed in
Table S2. Among the 359 lipids, SRM quantitation was only conducted
for 270 lipids, since the PC, PE, and TAG lipid classes were quantified
without differentiating the isomeric combinations of acyl chains.
Therefore, chain structures of these three classes are represented as the
total number of carbons and double bonds in acyl chain, as listed in
Table S2. The detailed chain structures of the geometric isomers, based
on CID experiments, are listed in Table S3. High-speed targeted quan-
titation of lipids was conducted by monitoring a precursor ion of each
lipid class and its corresponding product ion as a quantifier ion, uti-
lizing an SRM time-table in which a detailed inclusion list was made to
scan every lipid molecule within a 2-min interval during the gradient
nUPLC separation. The types of precursor and quantifier ion for each
lipid class are listed in Table S4. The number of identified and quan-
tified lipids as well as the molecular structures of 19 internal standards,
which were specific to each class and used to calculate the corrected
peak area of each lipid species, are also listed. Since the amount of each
IS added to each injection was 1 pmol, the corrected peak area of each
lipid species listed in Table S2 represent the approximate value at pmol
level, with an assumption that the effects of the length and degree of
unsaturation of acyl chains on MS intensity of lipids were minimized at
such low concentration levels [48]. The relative abundance of lipid
species were provided for N and NNN groups alone and calculated
within each lipid class. Lipid species with a bold number of relative
abundance represents high-abundance species in each class, which were
defined as having a percentage value larger than 100/number of lipids
in each class.

Lipidomic differences in the mouse brain tissue were examined by
comparing the overall levels of each lipid class as listed in Table S5. The
level of each lipid class is the summed value of corrected peak areas of
individual lipids (relative to 1 pmol of each IS) per each injection (10 μg
injection equal to 40 μg of tissue). As seen in Table S5. PI and PC were
highly abundant in the four brain regions examined in the current
study, followed by MHC and PE. This is clearly noted in the number
scales of corrected peak area plot (y-axis) of each lipid class shown in
Fig. 2 which shows the differences in the overall levels of these lipid
classes along with the compositional variations among tissues of which
the numbered individual lipids are relatively abundant in each class
and their molecular structures are listed in Table S6. The levels of ST,
SM, and PG appeared to be approximately 10–15-fold less abundant
than those of PC and PI. It is unique that the PI species were highly
abundant in brain tissue, compared to previously reported PI levels in
the lung or muscle tissue [43,49]. Significant differences (> 2-fold) in
the composition of lipid classes were found between the four regions, in
control mice (N), as marked in bold for the seven lipid classes (i.e.,
MHC, PEp, PA, TAG, ST, DAG, and SM) in Table S5 and in Fig. 2. In
Fig. 2, the levels of MHC, PEp, TAG, ST, and DAG are exclusively higher
in the hypothalamus than in other tissues and the level of PA in hip-
pocampus appear to be 2–3 times less abundant than in the others.
However, other highly abundant lipid classes such as PC and PE show
similar lipid levels among tissues except PI (1.5–2 times larger in hy-
pothalamus and olfactory bulb) in Fig. S4.

3.3. Effect of HF diet on brain lipids

Alterations in lipid profiles during the different diet programs were
analyzed using the PCA for the quantified results of 270 lipids from the
six mouse groups. Fig. 3 shows the PCA plots representing the differ-
ences in lipid profiles in the four brain regions among the mice from the
six different diet programs. Data points from mice with normal diet
(i.e., the N, FNN, and NNN groups) were clustered and clearly apart
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from those with an HF diet (i.e., the F, NNF, and FNF groups) for
analyzed brain regions. Data points from the cortex and hippocampus
were clustered very closely, implying that lipid patterns in these two
regions were similar to each other. Although differences between the
cortex and hippocampus were not obvious, these patterns were clearly
clustered apart from those of the olfactory bulb and hypothalamus.
Fig. 3 supports that the lipid profiles with a normal diet were clearly
different from those associated with an HF diet in every brain region
that was analyzed.

To clearly elucidate the difference between the HF diet groups and
normal diet groups, the volcano plots (log10 (p value) vs. log2 (fold
change)) of 270 quantified lipid species are shown in Fig. 4 for cortex
and hippocampus, and in Fig. S5 for hypocampus and olfactory bulb.
The two vertical lines in each plot represent 3-fold changes between HF
diet groups and normal diet groups (F vs. N, NNF vs. NNN, and FNF vs.
NNN). The volcano plots show that significant number of species were
influenced in HF diet> 3 fold increases.

As seen in Fig. 5 significant changes in tissue-specific lipid profiles
among different diet programs were observed for several lipid classes
(> 3-fold, p < 0.001). Fig. 5 shows that the HF diet significantly in-
creased the level of DAG in all analyzed regions, in the F (vs. N) and
FNF (vs. both NNN and FNN groups) groups. Further, the Cer level in
the olfactory bulb and cortex in the FNF was also elevated. Moreover,
the levels of LPC, LPE, LPG, LPS, and LPA in the cortex of mice in the
FNF group were significantly (> 3-fold) increased (Fig. 5c), while the
levels of PE, PEp, LPC, and LPE in the hippocampus in mice in the F
group were increased by> 3-fold (Fig. S6). These results indicated that

while the HF diet affected lysophospholipids in both the cortex and
hippocampus, it did not have much of an effect on those in the hy-
pothalamus and olfactory bulb.

Fig. 6 outlines the variations at the molecular level, in the four brain
regions, using a heat map of the 82 individual lipid molecules that
exhibited significant changes (> 3-fold and p < 0.001), either in the
NNF or FNF group, respectively, in comparison to the NNN group. The
heat map shows clear differences between the normal diet groups (i.e.,
the N, NNN, and FNN groups) and the HF diet groups (i.e., the F, NNF,
and FNF groups). The increased patterns appear to be larger in the
cortex and hypothalamus, compared to that in the other two regions.

While Fig. 5 shows the significant increase in DAG (> 3-fold,
p < 0.001) in the four brain regions, Fig. 7 shows changes (FNF/NNN)
in the level of high abundant DAG species, along with two Cer species
(d18:1/24:0 and d18:1/24:1). These results demonstrated that DAGs
were the lipid species that were most influenced by the HF diet, without
noticeable differences among individual species.

Although the HF diet seemed to increase most species, two PS
species (i.e., 18:0/22:6 and 18:1/22:6) in the heat map of Fig. 6 ap-
peared to decrease in the cortex and hippocampus. Further investiga-
tions on the variation of PS in relation to LPS, indicated that the de-
crease of PS molecules resulted in the increase of LPS in the cortex and
hippocampus. Fig. 8a plots the overall and individual levels of highly
abundant PS and LPS species in the cortex of mice in the FNN, NNF, and
FNF groups in comparison to the NNN group. Overall, there was no
change in the PS and LPS levels of the FNN group (vs. NNN), supporting
that the levels of these lipid in weight loss group (FNN) recovered to the

DAG
0

2

4

6

8

7

2
1
3
4
5
6
8
9
10
11
12
low

TAG
0

5

10

15

Co
rr

ec
te

d 
pe

ak
 a

re
a 

(v
s. 

IS
)

low

15
14
13
12

9
10

8

11

7
6
5
4
3
2
1

16

0

7

14

21

28

35

PEp

10
9

low

8
7
6
5
4
3

2

1

0

1

2

3

4

1

2

low

SM
0

3

6

9

1

2

3

low

ST

PA
0

5

10

15

20

25

2

1

3

7
low

6

4

5

0

50

100

150

Co
rr

ec
te

d 
pe

ak
 a

re
a 

(v
s. 

IS
)

MHC

2

1

3

4

low

Co

Hip

Hyp

OB

Fig. 2. Compositional differences in lipids among the four brain regions (i.e., Co, Hip, Hyp, and OB) of 8 weeks control (N) mice for the seven lipid classes (MHC, PEp,
PA, TAG, ST, DAG, and SM), which showed more than a 2-fold change among the four tissue types obtained by nUPLC-ESI-MS/MS. The number marked for each bar
represents an individual lipid molecule, species with relatively high abundance are listed in Table S6. The “low” represents the summed amount of the low abundance
species.

J.C. Lee et al. BBA - Molecular and Cell Biology of Lipids 1863 (2018) 980–990

984



NNN level after switching to a normal diet. The levels of PS lipids in the
NNF and FNF groups, however, were decreased by approximately 2-fold
in the cortex, while LPS levels were increased by 2–3-folds. These
changes could be primarily attributed to the decrease in highly abun-
dant PS molecules with acyl chains of 16:0, 18:0, 18:1, and 22:6. A
detailed plot for the cortex is shown in Fig. S7a, showing significant
decreases (of> 2-fold; represented by an asterisk) of highly-abundant
PS lipid species marked with * (i.e., 16:0/22:6, 18:0/22:6, and 18:1/
22:6). These decreases appeared to increase of LPS species containing
the same common chains (i.e., 16:0, 18:0, and 22:6), supporting that
highly abundant PS lipids were converted to LPS either by oxidative or
enzymatic dissociation. This is related to the oxidative cleavage of an
acyl chain of PLs, which primarily occurs with unsaturated acyl chains.

The degree of LPS increase in the cortex was larger in the FNF group
than in the NNF group. Similar results are demonstrated in the hippo-
campus (Fig. S7b) and hypothalamus (Fig. S7c). However, no notice-
able change in the PS and LPS levels (both overall and in highly
abundant species) in the olfactory bulb (Fig. 8b; also see detailed plots
in Fig. S7d).

3.4. Effect of weight cycling on brain lipids

Although the differences between the two mouse groups that ter-
minated with the HF diet (FNF and NNF) were not apparently large in
the heat map, the differences in the lipid profiles between the two
groups were interesting to trace the weight cycling effect, which is
known as the yo-yo effect. Fig. 9 shows the ratio (FNF/NNF) of 14 lipid
species that showed a significant change of> 1.5-fold (p < 0.01) in
the cortex, hippocampus, and olfactory bulb. Even with this mild
screening, none of lipid species in the hypothalamus showed a mean-
ingful difference upon weight cycling. Although the levels of two TAGs
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(52:2 and 52:4), 20:4-LPE, and 18:1/20:4-PI were further elevated in
the cortex, with weight cycling, it should be noted that 18:0p/20:1-PE
and 18:0-LPI were decreased. In the hippocampus, the species that
showed a significant change were found to decrease, except 38:7-PC. In
the olfactory bulb, however, the weight cycling effect elevated all four
species (i.e., 22:6-LPC, 42:10-PC, 46:1-TAG, and d18:0/24:0-Cer). The
lipids that showed an overall significant change (p < 0.01) are listed in
Table 1. A total of 10 (of 16), 2 (of 14), 2 (of 4), and 9 (of 9) lipids were
significantly elevated in the cortex, hippocampus, hypothalamus, and
olfactory bulb in the FNF group than in the NNF, respectively. Although

the ratio of FNF/NNF did not show significant alterations at the mo-
lecular level, the change in the levels of each lipid class are readily
recognized in the plots of Fig. 5, which demonstrated that the lipid
accumulation of some classes, such as DAG and Cer in the olfactory
bulb, LPS in the cortex, and PEp in the hippocampus, was accelerated
by the yo-yo effect.

4. Discussion

In this study, six different diet groups from four different regions of
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brain were analyzed. In phenotypic outcomes, FNF mice gained more
weight than the NNF group that did not undergo weight loss before HF
diet. The weight of liver and the size of adipocyte were significantly
increased in the FNF group compared to those in the NNF group.
Moreover, lipid droplets and triglyceride contents in the liver of FNF
were highly accumulated, and the levels of fasting blood glucose and
total cholesterol were significantly increased in the FNF group. In
summary, these findings indicate that weight regain (FNF) after weight
loss affects metabolic dysfunction as compared to weight gain (NNF).

In the lipidomic study, comprehensive profiling of brain lipids (270
quantified out of 359 identified lipids), following various diet pro-
grams, was accomplished for four different regions in the mouse brain,
using nUPLC-ESI-MS/MS. Examinations on the compositional varia-
tions of lipids among the four brain regions of mice with normal diet
revealed that the MHC, PEp, TAG, DAG, and ST lipid classes were en-
riched in the hypothalamus, while the olfactory bulb was rich in PS and
PG. The PCA analysis demonstrated that the effect of the HF diet on
individual lipid levels depended of the brain region, except in the cortex
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and hippocampus, which showed overall similarity. It was evident that
the first 8-weeks of an HF diet increased most classes of lipids by 2–3-
fold (F vs. N), with greater changes in the cortex and hippocampus,
than in the olfactory bulb and hypothalamus. However, the total
amounts of each lipid class reverted to the levels seen in the N group,
after a return to two consecutive 4-week normal diet periods (i.e., the
FNN group). This suggested that the lipid profiles recovered well, re-
gardless of a previous HF diet experience. When 4weeks of normal diet
were followed by 4weeks of an HF diet, to both the initial N and F
groups, it was surprising that the levels of the same lipid classes (i.e., in
the NNF and FNF groups) were ramped to similar levels or even higher
of the F group. Among the lipid classes, DAG showed a trend of in-
creasing in all four analyzed regions, while Cer was significantly in-
creased in the cortex and olfactory bulb. A recent study demonstrated
that the HF diet increased the levels of DAG and Cer in the mouse brain,
as well as in the pancreas, liver, and muscle [33]. Since an HF diet or
overnutrition causes an increase of intracellular DAG and Cer levels,
which are known to block insulin signaling in skeletal muscle and liver
[50], it can be expected that an HF diet would also lead to a substantial
increase in the level of DAG in the brain tissue, like in our study. This
was closely related to the DAG-induced insulin resistance in the muscle
[51] and brain [52]. In our studies, the PC levels in the hippocampus
and olfactory bulb were increased by weight cycling. (Fig. 9). It was
reported that PC levels were significantly increased in the cerebrospinal
fluid of patients with amyotrophic lateral sclerosis (ALS) and the brain
of mouse groups with ALS, the commonest adult-onset motor neuron
disorder characterized by the degeneration of motor neurons in the

brain and spinal cord [53].
On the other hand, it is interesting that the various brain regions

have different lipid composition. The brain is particularly enriched in
lipids with a more diverse lipid composition than other tissues [54].
Lipids play critical roles in various biological processes and functions in
brain, including membrane formation and trafficking, signal transmis-
sion, and synaptogenesis [55]. Brain contains three major classes of
lipids: phospholipid, sphingolipid, and cholesterol. While phospholipids
form the backbone of neural membranes [56], sphingolipids that are
enriched in neuronal membranes participate in the development and
differentiation of neurons [57]. The altered lipid profiles from different
areas of the brain can offer clues to metabolic controls related with cell
signaling. Brain cholesterol is an essential component not only in
structuring cellular membrane and myelin, but also in synapse forma-
tion, dendrite differentiation, axonal elongation, and long-term po-
tentiation [58]. Taken together, the changes in lipid compositions in
various regions of the brain appear to be due to the differences in
distribution, development and differentiation of neurons including
myelin sheaths, synapse, dendrite, and axon.

It is noteworthy that although the HF diet increased most lipids, it
decreased most PS species. The alterations in highly abundant PS spe-
cies are likely to be correlated with LPS. Although the HF diet decreased
the levels of highly abundant PS species, containing an acyl chain of
16:0, 18:0, and 22:6, by approximately 2-fold, in the cortex, hippo-
campus, and hypothalamus, in the NNF and FNF (vs. NNN) groups, the
LPS species with these acyl chains were significantly elevated.
However, this correlation was not observed in the olfactory bulb, as LPS

Table 1
Ratio (FNF/NNF) of lipid species showing a significant change (p < 0.01, FNF vs. NNF; shown in bold) in the a) cortex, b) hippocampus, c) hypothalamus, and d)
olfactory bulb. The relative abundance (%) of each lipid class is denoted and highly abundant species has been underlined.
F, high-fat diet; N, normal diet.

Class Molecular species m/z FNF/NNF

% Co % Hip % Hyp % OB

LPC 22:6 568.5 23.5 1.12 ± 0.15 17.2 1.13 ± 0.15 6.3 1.07 ± 0.17 23.1 1.91 ± 0.15
PC 38:2 814.5 1.3 0.6 ± 0.07 0.6 1.21 ± 0.11 1.4 1.28 ± 0.18 1.2 1.18 ± 0.05

38:7 804.5 0.1 1.08 ± 0.1 0.0 1.75 ± 0.25 0.1 1.16 ± 0.1 0.1 0.78 ± 0.13
40:2 842.5 0.2 1.43 ± 0.13 0.1 0.79 ± 0.05 0.2 0.93 ± 0.1 0.1 1.21 ± 0.13
42:10 854.5 0.1 1.29 ± 0.19 0.1 0.99 ± 0.16 0.2 0.97 ± 0.14 0.1 1.57 ± 0.17

LPE 18:2 478.5 0.6 1.49 ± 0.19 0.4 0.77 ± 0.07 0.3 0.88 ± 0.09 0.3 1.02 ± 0.09
20:3 504.5 1.0 0.91 ± 0.14 1.1 0.73 ± 0.07 0.5 0.69 ± 0.02 1.1 0.99 ± 0.1
20:4 502.5 25.2 1.72 ± 0.19 24.6 0.72 ± 0.09 11.6 0.3 ± 0.03 15.7 0.71 ± 0.07

PE 34:2 716.5 0.1 1.44 ± 0.15 0.2 0.91 ± 0.11 0.3 1.05 ± 0.13 0.3 0.79 ± 0.08
38:5 766.5 3.4 1.36 ± 0.1 6.8 1.28 ± 0.15 6.1 0.8 ± 0.1 6.6 0.74 ± 0.08

Pep 18:0p/20:1 758.5 4.8 0.57 ± 0.05 7.9 1.58 ± 0.18 6.6 0.67 ± 0.08 3.0 0.76 ± 0.09
20:1p/20:1 784.5 0.1 1.3 ± 0.23 0.2 1.41 ± 0.15 0.2 1.05 ± 0.17 0.1 1.31 ± 0.14

LPI 18:0 599.5 16.6 0.64 ± 0.05 27.4 0.96 ± 0.08 23.7 1.97 ± 0.19 14.8 0.97 ± 0.08
PI 18:1/20:4 883.5 9.0 1.59 ± 0.1 5.7 0.66 ± 0.06 7.7 1.24 ± 0.13 7.5 0.96 ± 0.09
LPS 22:4 572.5 3.2 1.46 ± 0.12 4.9 0.77 ± 0.06 5.9 1.06 ± 0.09 3.4 0.75 ± 0.08

22:6 568.5 26.3 1.37 ± 0.14 28.6 0.75 ± 0.05 30.4 1.3 ± 0.15 23.6 1.08 ± 0.1
LPA 18:1 435.5 18.8 1.12 ± 0.13 14.9 0.68 ± 0.08 18.9 0.82 ± 0.07 14.5 1.3 ± 0.11

20:1 463.5 2.5 0.77 ± 0.06 1.7 0.92 ± 0.1 1.4 0.74 ± 0.07 2.0 0.7 ± 0.06
22:6 481.5 40.4 1.14 ± 0.12 34.6 0.55 ± 0.06 30.4 0.83 ± 0.07 38.7 0.89 ± 0.07

DAG 16:2,18:1 608.5 0.4 0.99 ± 0.11 1.3 0.72 ± 0.08 0.9 0.88 ± 0.11 0.3 1.08 ± 0.12
18:1,18:0 640.5 7.4 0.73 ± 0.08 5.9 1.06 ± 0.12 5.1 1.15 ± 0.15 3.9 1.47 ± 0.16
18:1,22:0 696.5 2.0 1.61 ± 0.16 7.4 1.52 ± 0.11 1.8 0.76 ± 0.07 3.2 0.97 ± 0.09
18:2,20:0 666.5 0.3 1.74 ± 0.21 0.9 0.67 ± 0.08 0.6 0.74 ± 0.09 0.6 1.15 ± 0.12
20:0,20:4 690.5 29.5 1.12 ± 0.1 9.7 1.04 ± 0.1 28.5 1.14 ± 0.12 19.0 1.23 ± 0.1
20:0,22:6 714.5 17.3 1.15 ± 0.12 21.8 0.69 ± 0.09 23.1 1.04 ± 0.11 17.5 1.15 ± 0.12

TAG 46:1 794.5 3.7 0.97 ± 0.12 4.7 0.68 ± 0.08 2.7 1.01 ± 0.13 3.5 1.72 ± 0.19
48:4 816.5 0.2 0.69 ± 0.08 0.3 0.74 ± 0.08 0.0 1.36 ± 0.15 0.1 1.23 ± 0.13
52:0 880.5 1.3 0.94 ± 0.12 1.5 0.64 ± 0.07 1.0 0.84 ± 0.08 1.9 1.47 ± 0.13
52:2 876.5 8.3 1.74 ± 0.08 7.4 0.82 ± 0.08 7.5 1.17 ± 0.14 13.0 1.22 ± 0.14
52:4 872.5 0.8 1.8 ± 0.15 1.1 0.85 ± 0.1 0.6 1.11 ± 0.12 1.4 1.16 ± 0.16
54:5 898.5 10.9 1.22 ± 0.14 9.4 0.47 ± 0.06 7.2 1.5 ± 0.16 6.5 1.4 ± 0.21
56:1 934.5 0.0 1.31 ± 0.14 0.2 1.29 ± 0.13 0.1 0.9 ± 0.11 0.1 1.38 ± 0.11
56:6 924.5 0.4 1 ± 0.12 0.5 0.7 ± 0.09 0.8 1.32 ± 0.16 0.2 1.44 ± 0.15

ST d18:1/20:5 824.5 39.0 1.42 ± 0.16 38.5 0.63 ± 0.07 33.8 1.25 ± 0.15 35.7 1.23 ± 0.16
Cer d18:1/24:0 650.5 26.5 0.76 ± 0.06 29.7 0.93 ± 0.1 20.5 0.59 ± 0.06 21.8 1.52 ± 0.15

d18:1/24:1 648.5 56.6 0.75 ± 0.06 52.5 0.93 ± 0.09 46.3 1.1 ± 0.11 60.1 1.43 ± 0.13
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levels remained unchanged in the olfactory bulb. LPS is produced by
the oxidation of PS molecules by an enzyme or oxidant. The emerging
roles for LPS include the resolution of inflammation as well as the
promotion of phagocytosis of apoptotic cells [59]. Thus, the decrease in
PS levels with the substantial increase in LPS (with the same acyl
chains) can be expected due to the increase in oxidative stress and in-
flammation caused by the HF diet.

Overall, the final 4 weeks of the HF diet had a critical impact on the
perturbation of brain lipid profiles in the mouse group that experienced
an 8-week HF diet first (i.e., the FNF group). In contrast to those in the
NNF group, the 14 individual lipids of the FNF group that were sig-
nificantly increased (> 1.5-fold, p < 0.01), demonstrated the ac-
celerated accumulation of certain lipids due to the yo-yo effect. These
results implied that mice preceded with HF diet would be affected by
the HF diet more than those without it. This might be attributed to
adipose cellularity because adipocyte hypertrophy and the number of
adipocytes increased by obesity, however hyperplasia was maintained
even after weight loss. Furthermore, the obesity might cause permanent
changes in brain reward circuitry [60]. The HF diet can naturally cause
obesity and affect not only adipocytes but also non-adipocytes in-
cluding brain tissue, therefore, FNF was more affected than NNF. HF
diet and obesity are well known risk factors for the development of
neurodegenerative disease such as dementia [61,62]. HF diet-induced
damages to the brain are oxidative stress, insulin resistance, in-
flammation, and changes in blood-brain barrier (BBB) integrity [63].
HF diet was reported to result in obesity-induced hypothalamic neu-
roinflammation and increased BBB permeability in cortex and hippo-
campus, and BBB leakage was found as a contributing factor to obesity-
induced neuroinflammation and cognitive deficits [64,65]. Adminis-
tration of HF diet to rats was reported to induce a decrease of hap-
toglobin (Hpt) level which acts as an antioxidant by binding with free
haemoglobin (Hb) in hippocampus, resulting in the increase of protein
oxidative modification and neuroinflammation [66]. The latter strongly
suggested that Hpt secretion can be interrupted by the alteration in
brain lipid compositions.

Although the current study was confined to analyze lipids from a
pooled tissue sample of each group due to the limitations in the amount
(< 3mg) of hypothalamus and olfactory bulb of mouse, an insight on
biological replicates was not included. However, the present experi-
ments revealed not only the compositional differences of lipid mole-
cular distributions among four different brain regions, but also the fact
that the HF diet induced significant increases in the brain lipid levels.
Moreover, these results demonstrated that weight cycling may induce
the accelerated accumulation of a few lipids in the brain tissue.
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