CHAPTER 12
PLATE HEIGHT AND OPTIMIZATION
IN CHROMATOGRAPHY

12.1 PLATE HEIGHT EQUATIONS

given

\[H = \frac{B}{v} + \sum \left(\frac{1}{A_i \cdot v} + \frac{1}{C_{mi} \cdot v} \right) + C_s \cdot v \]

where

for packed columns

at low and medium velocity range, diffusion dominates.
\[A_i \] term dropped out. (\(H_f \) term)

\[H \] becomes

at high velocity, flow dominates.
\[H_D \] term dropped.

\[H \] becomes

\[\text{van Deemter equation} \]
for capillary columns (GC, SFC)

simple
1. st. phase - uniform film

2. no obstacles in column

3. only one flow (uniform space)

4. constant velocity

5. flow property - parabolic (well-known)

thus \(H \) becomes

\[
H = \frac{2D_m}{v} + \frac{1}{24} (6R^2 - 16R + 11) \frac{r_c^2v}{D_m} + \frac{2}{3} R(1 - R) \frac{d^2v}{D_s}
\]

or
12.2 PLATE HEIGHT AND GAS CHROMATOGRAPHY

In GC,

\[\text{gas compression} \quad \rightarrow \quad \text{velocity gradients} \quad \text{affect} \quad H \]

\[D_m \quad \text{scaled to} \quad D_g \quad \text{for GC} \]

\(o: \text{outlet} \)

since \(pv = \text{const.} \)

\[\text{high} \, v \quad \rightarrow \quad \text{high} \, D_g \] \hspace{1cm} (12.15)

at inlet, compression \(\rightarrow \) slow \(v \), slow \(D_g \)

Based on 12.15

thus

\[H_s = C_s \, v \]

consider av. velocity as: \(\tilde{v} \)

\[H_s = C_s \tilde{v} \quad \text{time av. velocity} \]

\[\tilde{v} = v_o \, j \quad \text{observed plate height} \]
observed plate height

is the sum of the last two expressions

as

fully corrected eq.

12.3 REDUCED PLATE HEIGHT

universal curve by reduced variables (by J.C. Giddings)

c: critical point

\[v_r = \frac{v}{v_c}, \quad T_r = \frac{T}{T_c}, \quad P_r = \frac{P}{P_c} \]
for chromatography, H_f and H_D

when $H_f = H_D$, transition between flow controlled and diffusion controlled random walk.

occurs at $v_c' = v$

v_c' gives as

use simpler parameter
(dues to the complexity of λ and ω)

reduced velocity

(12.23)

reduce plate height as dimensionless form by d_p

$$h = \frac{H}{d_p}$$
plate height in 12.1

for all well packed column

\[h \text{ is function of only } v_r, \gamma (\text{packing structure}), \omega_i, \lambda_i \]

for poorly packed columns

small \(\Omega \), large \(\gamma \)

mobile phase term gives \(\propto v_r^n \quad n \sim 1/3 \)

\[h = \frac{2\gamma}{v_r} + \alpha v_r^n + \Omega v_r \]
12.4 OPTIMIZATION: HIGHER RESOLUTION

resolution given in eq 5.58

thus

when ΔR gets small --- dR

rearrangement gives

from eq. 10.9

its reciprocal

we find

combine 12.35 with 12.37
gives

$$R \Delta \left(\frac{1}{R} \right) = \Delta K \frac{V_s}{V_m} \frac{V_m}{V_m + KV_s}$$
finally
to increase R_s

1. keep R small
2. increase N

$$N = \frac{L}{H}$$

decrease H or increase L

resolution and thermodynamics - $\Delta K/K$ term

by differentiation

$dK = \ldots$

thus

rearrange R_s into N
Table 12.2 Number of plates required to obtain unit resolution for different $\Delta(\Delta\mu^o)$ values at 300K and $R=0.2$.

\[
\begin{array}{ccc}
N & \text{cal/mol} & \text{j/mol} \\
400 & 150 & 620 \\
2500 & 60 & 250 \\
10,000 & 30 & 125 \\
40,000 & 15 & 62 \\
250,000 & 6 & 25 \\
1,000,000 & 3 & 12 \\
\end{array}
\]

3 cal/mol gives $R_s = 1$ in column of 10^6 plates.
(intermolecular interaction)

isomers (small structural differences)
-- can be separated in high N columns

complex multicomponent separation

consider n_c rather than R_s

separate multicomponents?

need much more space along the sep. axis than that required to hold the peaks.
(Due to overlap of peaks)
Need to consider peak isolated successfully

when \(n_c = 200, m = 100 \) gives only \(s = 37 \)

\[n_c >> m \]

high \(n_c \) needs large \(N \), small \(H \)

minimizing plate height

plate height \(H \) depends on
flow velocity \(d_p \)
packing non-uniformity \(\lambda \)
diffusivity \(D_m, D_s \)
degree of retention
st. phase structure
temperature
pressure drop
Optimization?

choose velocity v

to get min. v

v_{opt} gives

$H_{min} =$
if \(C_s \gg C_m \) st. ph. noneq. Dominated

\[
C = C_m + C_s \approx C_s \\
B = 2 \gamma D_m
\]

Now, \(H_{\text{min}} = 2(BC)^{1/2} \)

\[
H_{\text{min}} = \left\{ 8\gamma \left(\omega d_p^2 + qR(1 - R) \frac{D_m}{D_s} d^2 \right) \right\}^{1/2}
\]

Figure 12.4. Plate height versus flow velocity plot for negligible stationary phase non-equilibrium effects (bottom curve) and for dominant stationary phase effects (top).

In general case,

\[
H_{\text{min}} = \left\{ 8\gamma \left(\omega d_p^2 + qR(1 - R) \frac{D_m}{D_s} d^2 \right) \right\}^{1/2}
\]

without considering speed of separation

think parameters other than \(v \)

1) st. ph. Effect

2) mob. ph. Effect

3) extracolumn effect
12.5 OPTIMIZATION: FASTER SEPARATION

from the simple theory \[N = \frac{L}{H} \]

increase \(N \) \(\leftrightarrow \) increase \(L \)
impractical due to sep. time increase

\[L = NH \]

separation time \(t \)
the time to separate comp. \(m \) in column \(L \) at sample velo. \(V = Rv \)

\[t = \frac{L}{V} = \]

\[N = \frac{16R_s^2}{(\Delta K / K)^2(1 - R)} \]

consider
1. use small \(N \) - gives small \(t \)
 needs high ratio of \(\Delta K / K \)
2. \(N/R \) ratio

for a given column, mo.phase., and \(T \)
\(N/R \) fixed

\[t \propto \frac{H}{v} \]
H/v becomes smaller as v increases

Figure 12.5. The H/v ratio shown as a slope for the two operating velocities v_i and v_1.

as v increases, Δp increases

Basic equation: \hspace{1cm} (12.60)

Allow d_p to vary

1) H is scaled to d_p

2) v is scaled to D_m/d_p

thus H/v curve changes

remedy: convert to reduced variables

\hspace{1cm} (12.64)
\[t = \frac{N H}{R \sqrt{d_p}} = \frac{N h d_p}{R \sqrt{D_m / d_p}} = \frac{N h d_p^2}{R \sqrt{D_m}} \]

Thus \(t \) (and \(\Delta p \)) increase with \(d_p \)

since: \(\Delta p = \frac{\phi \eta \sqrt{L}}{d_p^2} \) (12.63) and \(L = NH \) (12.59)

\(d_p \) is (12.65)

however: thus:

\(t \) becomes: (12.66)

Conclusions
\(t \) proportional to
- \(1/\Delta p \) (increase \(\Delta p \))
- \(h \) (reduce to minimum)
- \(\eta \) (minimize)

only well packed columns with a minimum stationary phase contribution to \(H \)