11.1 Metal-chelate complexes

Metal ← Ligand
(donation of e pair)

Lewis acid → Lewis base

Monodentate: CN-,
Bidentate: en
Multidentate: edta

Titration based on complex formation:
Complexometric titration

11.2 The Chelate effect

Stability increased by multidentate ligands

\[
\text{Cd(H}_2\text{O)}^2+ + 2\text{H}_2\text{N}.\text{NH}_2 \rightleftharpoons \text{Ethylenediamine} \quad \frac{[\text{Cd(NH}_2\text{)}^2]}{[\text{Cd(H}_2\text{O)}^2+][\text{H}_2\text{N}.\text{NH}_2]} = K = 8 \times 10^9
\]

\[
\text{Cd(H}_2\text{O)}^2+ + 4\text{CH}_3.\text{NH}_2 \rightleftharpoons \text{Methylamine} \quad \frac{[\text{Cd(NH}_2\text{)}^2]}{[\text{Cd(H}_2\text{O)}^2+][\text{CH}_3.\text{NH}_2]^4} = K = 4 \times 10^6
\]
11.1. Metal-chelate complexes

11.2. EDTA: widely used as chelator

1) Acid-Base properties

EDTA: H_6Y^{2+}

The first four pK_a - carboxyl protons
last two pK_a - ammonium protons

$pk_1 = 0.0$
$pk_2 = 1.5$
$pk_3 = 2.0$
$pk_4 = 2.69$
$pk_5 = 6.13$
$pk_6 = 10.37$

Neutral acid form: tetraprotic: H_4Y
protonated form: $Na_2H_2Y\ 2H_2O$
DIFFERENT FORMS OF EDTA IN SOLUTIONS:

- Y^4^-
- HY^3^-
- $H_2Y^2^-$
- H_3Y^-
- H_4Y
- H_5Y^+
- H_6Y^{2+}

$\alpha_{Y^4^-}$: fraction of EDTA in the form of Y^4^-

$$\alpha_{Y^4^-} = \frac{[Y^4^-]}{[EDTA]}$$

$pk_1=0.0$
$p k_2=1.5$
$p k_3=2.0$
$p k_4=2.69$
$p k_5=6.13$
$p k_6=10.37$

Table 12-1: Values of $\alpha_{Y^4^-}$ for EDTA at 20°C and $\mu = 0.10$ M

<table>
<thead>
<tr>
<th>pH</th>
<th>$\alpha_{Y^4^-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3×10^{-23}</td>
</tr>
<tr>
<td>1</td>
<td>1.4×10^{-18}</td>
</tr>
<tr>
<td>2</td>
<td>2.6×10^{-14}</td>
</tr>
<tr>
<td>3</td>
<td>2.1×10^{-11}</td>
</tr>
<tr>
<td>4</td>
<td>3.0×10^{-9}</td>
</tr>
<tr>
<td>5</td>
<td>2.9×10^{-7}</td>
</tr>
<tr>
<td>6</td>
<td>1.8×10^{-5}</td>
</tr>
<tr>
<td>7</td>
<td>3.8×10^{-4}</td>
</tr>
<tr>
<td>8</td>
<td>4.2×10^{-3}</td>
</tr>
<tr>
<td>9</td>
<td>0.041</td>
</tr>
<tr>
<td>10</td>
<td>0.30</td>
</tr>
<tr>
<td>11</td>
<td>0.81</td>
</tr>
<tr>
<td>12</td>
<td>0.98</td>
</tr>
<tr>
<td>13</td>
<td>1.00</td>
</tr>
<tr>
<td>14</td>
<td>1.00</td>
</tr>
</tbody>
</table>

EDTA: widely used as a chelator

Figure 12-2: Fractional composition vs. pH for EDTA in different forms.
11.7

2) EDTA complexes

\[M^{n+} + Y^{4-} \rightleftharpoons MY^{n-4} \]

only with \(Y^{4-} \)

\[K_f = \frac{[MY^{n-4}]}{[M^{n+}][Y^{4-}]} \]

Table 12-2 shows large \(K_f \) for most EDTA complex.

Table 12-2 Formation constants for metal-EDTA complexes

<table>
<thead>
<tr>
<th>Ion</th>
<th>(\log K_f)</th>
<th>Ion</th>
<th>(\log K_f)</th>
<th>Ion</th>
<th>(\log K_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li⁺</td>
<td>2.95</td>
<td>V⁺³</td>
<td>25.9</td>
<td>Ti⁺³</td>
<td>35.3</td>
</tr>
<tr>
<td>Na⁺</td>
<td>1.86</td>
<td>Cr⁺³</td>
<td>23.4</td>
<td>Bi⁺³</td>
<td>27.8</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.8</td>
<td>Mn⁺²</td>
<td>25.2</td>
<td>Ce⁺³</td>
<td>15.93</td>
</tr>
<tr>
<td>Be⁺²</td>
<td>9.7</td>
<td>Fe⁺³</td>
<td>25.1</td>
<td>Pr⁺³</td>
<td>16.30</td>
</tr>
<tr>
<td>Mg⁺²</td>
<td>8.79</td>
<td>Co⁺³</td>
<td>41.4</td>
<td>Nd⁺³</td>
<td>16.51</td>
</tr>
<tr>
<td>Ca⁺²</td>
<td>10.65</td>
<td>Zr⁺⁴</td>
<td>29.3</td>
<td>Pm⁺³</td>
<td>16.9</td>
</tr>
<tr>
<td>Sr⁺²</td>
<td>8.72</td>
<td>Hf⁺⁴</td>
<td>29.5</td>
<td>Sm⁺³</td>
<td>17.06</td>
</tr>
<tr>
<td>Ba⁺³</td>
<td>7.88</td>
<td>VO⁺⁴</td>
<td>18.7</td>
<td>Eu⁺³</td>
<td>17.25</td>
</tr>
<tr>
<td>Ra⁺⁴</td>
<td>7.4</td>
<td>VO₂⁺</td>
<td>15.5</td>
<td>Gd⁺³</td>
<td>17.35</td>
</tr>
<tr>
<td>Sc⁺³</td>
<td>23.1</td>
<td>Ti⁺⁵</td>
<td>7.20</td>
<td>Tb⁺³</td>
<td>17.87</td>
</tr>
<tr>
<td>Y⁺⁷</td>
<td>18.08</td>
<td>Ti⁺⁶</td>
<td>6.41</td>
<td>Dy⁺⁷</td>
<td>18.30</td>
</tr>
<tr>
<td>La⁺⁵</td>
<td>15.36</td>
<td>Pd⁺⁴</td>
<td>25.6</td>
<td>Ho⁺⁵</td>
<td>18.56</td>
</tr>
<tr>
<td>V⁺⁷</td>
<td>12.7</td>
<td>Zn⁺⁴</td>
<td>16.5</td>
<td>Er⁺⁵</td>
<td>18.89</td>
</tr>
<tr>
<td>Cr⁺³</td>
<td>13.6</td>
<td>Cd⁺⁴</td>
<td>16.5</td>
<td>Tm⁺⁵</td>
<td>19.32</td>
</tr>
<tr>
<td>Mn⁺³</td>
<td>13.89</td>
<td>Hg⁺²</td>
<td>21.5</td>
<td>Yb⁺⁵</td>
<td>19.49</td>
</tr>
<tr>
<td>Fe⁺²</td>
<td>14.30</td>
<td>Sn⁺²</td>
<td>18.3</td>
<td>Lu⁺⁵</td>
<td>19.74</td>
</tr>
<tr>
<td>Co⁺²</td>
<td>16.45</td>
<td>Pb⁺²</td>
<td>18.0</td>
<td>Th⁺⁵</td>
<td>23.2</td>
</tr>
<tr>
<td>Ni⁺²</td>
<td>18.4</td>
<td>Al⁺³</td>
<td>16.4</td>
<td>U⁺⁵</td>
<td>25.7</td>
</tr>
<tr>
<td>Cu⁺²</td>
<td>18.78</td>
<td>Ga⁺³</td>
<td>21.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti⁺³</td>
<td>21.3</td>
<td>In⁺³</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The stability constant is the equilibrium constant for the reaction \(M^{n+} + Y^{4-} \rightleftharpoons MY^{n-4} \). Values in table apply at 25°C and ionic strength 0.1 M unless otherwise indicated.

a. 20°C, ionic strength = 0.1 M.
 b. 20°C, ionic strength = 1 M.

Table 12-2
Quantitative Chemical Analysis, Seventh Edition
© 2007 W. A. Benjamin and Company

11.8

3) Conditional formation const.

Below pH 10.4, most EDTA exist non \(Y^{4-} \) need to know exact amount of \(Y^{4-} \)

\[[Y^{4-}] = \alpha Y^{4-} [EDTA], \quad [EDTA] = \text{total conc.} \]

\[K_f = \frac{[MY^{n-4}]}{[M^{n+}]\alpha Y^{4-} [EDTA]} \]

\[K_f \alpha Y^{4-} = K'_f = \frac{[MY^{n-4}]}{[M^{n+}][EDTA]} \]

: conditional formation const.(effective const.)

We need to know \(\alpha Y^{4-} \) at each pH condition.
Ex) The formation constant in Table 12-2 for FeY\(^{-}\) is
\(10^{25.1} = 1.3 \times 10^{25}\). Calculate the concentration of free Fe\(^{3+}\) in
solutions of 0.10 M FeY\(^{-}\) at pH 8.00 and at pH 2.00.

At pH 8.0 \([\text{Fe}^{3+}] = 1.35 \times 10^{-12}\)M
At pH 2.0 \([\text{Fe}^{3+}] = 5.44 \times 10^{-7}\)M

At low pH,
Metal-EDTA complex
= less stable.

For a titration,
consider how pH affects
the titration of
Ca\(^{2+}\) with EDTA
11.3. EDTA titration curves

the concentration of free metal ion during titration with EDTA?
similar to the titration of strong acid (~metal) by a strong base (~EDTA)

Reg. 1: Before equivalence point,
M\(^{n+}\) : excess, unreacted
MY\(^{n-4}\) : dissociation - negligible

Reg. 2: At the equivalence point
MY\(^{n-4}\) : dissolves some free M\(^{n+}\),
(MY\(^{n-4}\) ⇌ M\(^{n+}\) + EDTA)

Reg. 3: After equivalence point.

11.12

1) Titration calculations
Titration of 50.0 mL of 0.0500 M Mg\(^{2+}\) with 0.0500 M EDTA (pH 10.0)
Mg\(^{2+}\) + EDTA → MgY\(^{-2}\)

\[K_f' = \alpha_{Y^4} K_f = 0.36 \times (6.2 \times 10^8) = 2.23 \times 10^8 \]

Reg. 1) When 5.0 mL of EDTA added,
\[pMg^{2+} = \]
11.13 EDTA titration curves

Reg. 2) at eq. 50.0 mL of EDTA added, all converted to Mg-EDTA (MgY²⁻)

\[[\text{MgY}²⁻] = \text{M} \]

conc. of free metal ion ?

\[
\begin{align*}
\text{MgY}²⁻ & \quad \text{Mg}²⁺ \quad + \quad \text{EDTA} \\
\text{initial} & \quad \text{final} \\
K_f' &= \frac{[\text{MgY}²⁻]}{[\text{Mg}²⁺][\text{EDTA}]} \\
x &= [\text{Mg}²⁺] = \\
p\text{Mg} &= \]

11.14 EDTA titration curves

Reg. 3) After 51.0 mL of EDTA (1.0 mL of EDTA-excess) excess [EDTA] = \text{M}

\[[\text{MgY}²⁻] = \text{M} \quad (\text{adjusted conc.}) \]

\[
K_f' = \frac{[2.48 \times 10^{-2}]}{[\text{Mg}²⁺][4.98 \times 10^{-4}]} = 2.23 \times 10^{8} \\
[\text{Mg}²⁺] = 2.2 \times 10^{-7} \text{ M}, \quad p\text{Mg} = \]
11-3. EDTA titration curves

Figure 11-11
Quantitative Chemical Analysis, Seventh Edition
© 2007 W. H. Freeman and Company

11-5. Auxiliary Complexing Agents

1) Metal-Ligand Equilibria.
To permit many metals to be titrated in alkaline sol with EDTA, auxiliary complexing agent is used. It binds metal strongly enough to prevent metal hydroxide

\[
\begin{align*}
\alpha_M &= \frac{[M]}{[M_{\text{tot}}]} \\
\beta_1 &= \frac{[ML]}{[M][L]} \\
\beta_2 &= \frac{[ML_2]}{[M][L]^2}
\end{align*}
\]

\[
M_{\text{tot}} = [M] + [ML] + [ML_2]
\]
11.17

\[M_{\text{tot}} = [M] + [ML] + [ML_2] \]
\[= [M] + \beta_1 [M][L] + \beta_2 [M][L]^2 \]
\[= [M] \{1 + \beta_1 [L] + \beta_2 [L]^2\} \]

\[\alpha_M = \frac{[M]}{[M]\{1 + \beta_1 [L] + \beta_2 [L]^2\}} = \frac{1}{1 + \beta_1 [L] + \beta_2 [L]^2} \]

\[K''_f = \alpha_{Zn^2+} + \alpha_{Y^4+} - K_f \]

11.18

11-6. Metal ion indicator

End-point detection
1) Metal ion indicator Table 11-3
2) Mercury electrode
3) glass electrode
4) ion-selective electrode

Table 11-3 Common metal ion indicators

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>(pK_a)</th>
<th>Color of free indicator</th>
<th>Color of metal ion complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calmagite</td>
<td>(\text{HN}^+)</td>
<td>(8.1) 12.4</td>
<td>(\text{H}^{+}) red</td>
<td>Wine red</td>
</tr>
<tr>
<td></td>
<td>(\text{In}^3+) blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{In}^+) orange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriochrome black T</td>
<td>(\text{O}S\text{H}^+)</td>
<td>(6.3) 11.6</td>
<td>(\text{H}^{+}) red</td>
<td>Wine red</td>
</tr>
<tr>
<td></td>
<td>(\text{In}^3+) blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{In}^+) orange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murexide</td>
<td>(\text{O}N\text{H}^+)</td>
<td>(9.2) 10.9</td>
<td>(\text{H}^{+}) red-violet</td>
<td>Yellow (with (\text{Co}^{2+}, \text{Ni}^{2+}, \text{Cu}^{2+})); red with (\text{Ca}^{2+})</td>
</tr>
</tbody>
</table>

PREPARATION AND STABILITY:
Calmagite: 0.65 g/100 ml H_2SO_4 solution is stable for a year in the dark.
Eriochrome black T: Dissolve 0.1 g of the solid in 7.5 ml of triethanolamine plus 2.5 ml of absolute ethanol; solution is stable for months; best used for titrations above pH 6.5.
11.7 EDTA titration technique

Direct Titration

Back Titration

1) known excess of EDTA is added to analyte
2) excess EDTA is titrated with second metal ion.

Ex) \(\text{Ni}^{2+} \) is back titrated using standard \(\text{Zn}^{2+} \) at pH 5.5 with xylenol orange indicator. A solution containing 25.00 mL of \(\text{Ni}^{2+} \) in dilute HCl is treated with 25.00 mL of 0.05283 M \(\text{Na}_2\text{EDTA} \). The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.02299 M \(\text{Zn}^{2+} \) requires 17.61 mL to reach the red end point. What is the molarity of \(\text{Ni}^{2+} \) in the unknown?

Homework

6, 9, 16, 31, 34