Isomerism - <u>Stereoisomers</u>

6 CN ; Octahedron, Triethylentetraamine

Isomerism - <u>Stereoisomers</u>

Number of possible Isomers

화학식	입체 이성질체의 수	카이랄 이성질체쌍의 수		
Mac	1	0		
Masb	1	0		
Maaba	2	0		
Maaba	2	0		
Ma ₄ bc	2	0		
Ma ₃ bcd	5	1		
Ma ₂ bcde	15	6		
Mabcdef	30	15		
Ma ₂ b ₂ c ₂	6	1		
Ma ₂ b ₂ cd	8	2		
Ma ₃ b ₂ c	3	0		
M(AA)(BC)de	10	5		
M(AB)(AB)cd	11	5		
M(AB)(CD)ef	20	10		
M(AB) ₃	4	2		
M(ABA)cde	9	3		
M(ABC) ₂	11	5		
M(ABBA)cd	7	3		
M(ABCBA)d	7	3		

주: 대문자로 표기된 리간드는 킬레이트 리간드이고, 소문자로 표기된 것은 한 자리 리간드이다.

Isomerism - <u>Stereoisomers</u>

Isomerism - Stereoisomers

Number of possible Isomers

Isomers of Ma₂bcde (O_h)

Isomerism – <u>Stereoisomers:</u> Combination of Chelate Rings (\land , \triangle)

Handedness of chelate Rings

그림 9-12 오른쪽손과 왼쪽손 성질을 가지는 프로펠러들. (a) 왼 손성(left-handed) 프로펠러와 날 끝 부분의 궤적에 의해 만들어진 나 선 모양. (b) 오른손성(right-handed) 프로펠러와 날 끝부분의 궤적에 의해 만들어진 나선 모양.

Isomerism – <u>Stereoisomers:</u> Combination of Chelate Rings (∧, ∆)

[Co(en)₃]³⁺

그림 9-13 왼쪽성(Λ)과 오른쪽성(Δ)의 킬레이트.

Isomerism – <u>Stereoisomers:</u> Combination of Chelate Rings (∧, ∆)

Procedure for Determining Handedness

그림 9-14 손대칭성을 결정하는 방법. 1.분자를 돌려서 뒤쪽의 삼각형 관계 에 있는 3개의 N(중심 금속과 점선 으로 연결되어 있음)중 윗부분의 2 개가 고리를 형성하도록 위치시킨 다. 2.앞쪽 3개의 N(중심 금속과 꺽쇠 표 시로 연결되어 있음)에 의해 만들어 진 삼각형만을 태엽을 감듯이 회전 시켜 앞과 뒤의 삼각형이 겹쳐지는 삼각기둥(trigonal prism) 모양을 만드 는 것을 상상한다. 3.태엽을 감듯 힘을 준 손을 놓았을 때 원래의 모습으로 돌아가는 회전 방향이 반시계 방향이면 람다(lamda, Λ) 이성질체이고, 원래의 모습으로 돌아가는 회전 방향이 시계 방향이 면 델타 (delta, Δ) 이성질체이다.

Isomerism – <u>Stereoisomers:</u> <u>Combination of Chelate Rings (∧, ∆)</u> CoEDTA⁻

Not coplanar, not connected at the same atom

<u>Stereoisomers: Lighad Ring</u> <u>Conformation</u>

6 CN ; Octahedron, Triethylentetraamine

<u>Stereoisomers: Lighad Ring</u> <u>Conformation</u>

Chelate Ring Conformation (λ , δ **)**

- Ex) ethylenediamine (en) :
- 1st line conneting atoms bonded to the metal 2nd line – conneting two carbon atoms

1st \rightarrow 2nd : counterclockwise $\rightarrow \lambda$ 1st \rightarrow 2nd : clockwise $\rightarrow \delta$

 $[Co(en)_3]^{3+}$

 $\Delta\lambda\lambda\lambda$ -[Co(en)₃]³⁺ more stable in calculation $\Delta\delta\delta\delta$ -[Co(en)₃]³⁺

actually, in solution $\lambda \leftarrow \rightarrow \delta$ intercoversion

in soln, $\delta\delta\lambda$ is most abundant in Λ form

<u>Stereoisomers: Lighad Ring</u> <u>Conformation</u>

<u>6 CN ; Octahedron, Triethylentetraamine</u>

Hydrate Isomers

Hydrate Isomers: having water as either a ligand or an added part of the crystal structure

Isomerism – <u>Constitutional isomers:</u> Ionization Isomerism

Ionization Isomers: Exchange of ions between inside and outside coordination sphere

<u>Constitutional isomers:</u> <u>Coordination Isomerism</u>

<u>Coordination Isomers: require at least two</u> <u>metal</u>

 $[Co(en)_3]^{2+}[Cr(CN)_6]^{2-}$ $[Cr(en)_3]^{2+}[Co(CN)_6]^{2-}$ $[Pt(NH_3)_4]^{2+}[PtCl_6]^{2-}$ $[Pt(NH_3)_4Cl_2]^{2+}[PtCl_4]^{2-}$

Linkage (ambidentate) Isomerism

Linkage Isomers: Compounds containing

Isomerism – <u>Separation and</u> Identification of Isomers

Separation

Fractional Crystalization – packing, solubility, size, charge

Chiral Isomers Resolution – chiral counterions

Identification

X-ray crystallography

Optical rotatory dispersion (ORD)

Circular dichroism (CD)

Coordination Numbers and Structures

Structures vs Properties.

Factors for Structures	CN	Geometries			
1. Number of Bonds	1	Rare			
Bond formation is usually exothermic	2	Linear			
So stability	3	Trigonal-plane			
 VSEPR Occupancy of d orbitals 	4	Tetrahedron, Square-plane			
Square-planar vs Tetrahedral	5	Trigonal bipyramid, Square pyramid			
5. Crystal Packing Effects	6	Octahedron, Trigonal prosm			
Crystalline Lattice vs Solution	7	Pentagonal bipyramid, Capped trigonal prism, Capped octahedron			
Which one is a dominant factor?		Known up to 16 CN			

Oxidation States of Transition Metals

	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
≤ 0			0	0	0	0	0	0	0	
+1			0	0	0	0	0	0	0	
+2		0	0	0	0	0	0	0	0	0
+3	0	0	0	0	0	0	0	0	0	
+4		0	0	0	0	0	0	0		
+5			0	0	0	\bigtriangleup	0			
+6				0	0	0				
+7					0					

O: most common

Coordination Numbers and Structures CN = 1, 2, and 3

<u>CN = 1, Rare</u>

Coordination Numbers and Structures CN = 1, 2, and 3

<u>CN = 2, Rare, Linear ($D_{\underline{\infty}h}$)</u> <u>Mostly d¹⁰ metals, Ag(I), Cu(I), Au(I), Hg(II)</u> <u>d⁵, d⁶, d⁷</u>

Coordination Numbers and Structures CN = 1, 2, and 3

<u>CN = 3, Rare, Trigonal planar (D_{3h})</u> <u>Mostly d¹⁰,</u> <u>PPh₃, N(SiMe₃)₂,</u> Bulky enough, Steric effect vs Electroic structure

그림 9-24 K₂Au₂P₂Se₆, 세 가지 서로 다른 구조를 가지는 Au을 포 함하는 화합물. 검은색 표시된 구, Au; 큰 무색 구, Se; 작은 무색 구, P. [P₂Se₆]^{4 -} 이온이 Au(I) 이온을 선형과 삼각형 구조로 연결하고 Au(III) 이온을 평면사각형 구조로 연결한다. 이 구조는 긴 사슬 모양 을 하면서 K⁺ 이온을 포함하는 긴 채널(channel)을 이루면서 적층 되며 결정을 이룬다.

(K. Chordroudis, T. J. McCarthy, 그 리고 M. G. Kanatzidis의 *Inorg Chem.* 1996, *35*, 3451에서 발췌함)

19/3, 12, 11/0에서 발췌암).

Coordination Numbers and Structures CN = 4

<u>CN = 4, Tetrahedral (T_d) Squre-planar(D_{4h})</u> <u>Tetrahedral (T_d) ; very common,</u>

지는 착화합물들.

 BF_4

 MnO_4

Ni(CO)₄

$\frac{\text{Coordination Numbers and Structures}}{\text{CN} = 4}$

<u>CN = 4, Tetrahedral (T_d) Squre-planar(D_{4h})</u> Squre-planar(D_{4h}) ; mostly d⁸ (Pd(II), Pt(II), Ni(II), Ag(III), Ir(I) Rh(I))

$\frac{COORDINATION NUMBERS and Structures}{CN = 4}$

<u>CN = 4, Tetrahedral (T_d) Squre-planar(D_{4h})</u> Squre-planar(D_{4h}); mostly d⁸ (Pd(II), Pt(II), Ni(II), Ag(III), Ir(I) Rh(I))

Tetrahedral vs Square-planar Counterion, Crystal Packing

 $\triangle E$ is not big.

 $[NiBr_2(P(C_6H_5)_2(CH_2C_6H_5)_2]$: both T_d and D_{4h} in the same crystal

$\frac{\text{COOrdination Numbers and Structures}}{\text{CN} = 5}$

<u>CN = 5, Trigonal bipyramid (D_{3h}), Square pyramid (C_{4v})</u>

$\frac{\text{Coordination Numbers and Structures}}{\text{CN} = 6}$

$\frac{\text{Coordination Numbers and Structures}}{\text{CN} = 6}$

<u>CN = 6, Octahedral (O_h) to Trigonal Prism (D_{3h})</u>

trigonal elongation : trigonal antiprism (D_{3d})

and 60° rotation : trigonal prism (D_{3h})

 π Interactions between adjacent sulfur atoms

Coordination Numbers and Structures CN = 7

<u>CN = 7, Pentagonal bipyramid (O_h), Capped</u> <u>trigonal prism, Capped octahedron</u>

Capped trigonal prism Pentagonal bipyramid

Capped octahedron

Different counterion, steric requirment

Coordination Numbers and Structures CN = 8

CN = 8, Square antiprism, Dodecahedron

Eight coordination is rare in the first row transition metals

Why?

Central ion must be large in order to accommodate eightcoordination

Square antiprism

Dodecahedron

Compressed Square antiprism

Coordination Numbers and Structures $CN \ge 8$

$CN \ge 8$, known up to 16, not common

그림 9-33 큰 배위수를 가지는 배위 화합물들. (a) [Ce(NO₃)₆]³⁻, 나 이트레이트(nitrate) 리간드가 두 자 리 리간드로 결합. (T. A. Beinnecke 와 J. Delgaudio의 Inorg. Chem. 1968, 7, 715에서 발췌함) (b) [ReH9]2-, 덧씌운 삼각 프리즘 (capped trigonal prism) 구조. (S. C. Abrahams, A. P. Ginsberg, 그리고 K. Knox 9 Inorg. Chem. 1964, 3, 558 0 서 발췌함)

Н

Н

Multimetallic Compexes

