Isomerism - Stereoisomers

6 CN ; Octahedron, Triethylentetraamine

No coplanar rings
Two coplanar rings
Three coplanar rings

Isomerism - Stereoisomers

Number of possible Isomers

화학식	입체 이성질체의 수	카이랄 이성질체쌍의 수
Ma_{6}	1	0
$\mathrm{Ma}_{5} \mathrm{~b}$	1	0
$\mathrm{Ma}_{4} \mathrm{~b}_{2}$	2	0
$\mathrm{Ma}_{3} \mathrm{~b}_{3}$	2	0
$\mathrm{Ma}_{4} \mathrm{bc}$	2	0
$\mathrm{Ma}_{3} \mathrm{bcd}$	5	1
$\mathrm{Ma}_{2} \mathrm{bcde}$	15	6
Mabcdef	30	15
$\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{c}_{2}$	6	1
$\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{~cd}$	8	2
$\mathrm{Ma}_{3} \mathrm{~b}_{2} \mathrm{C}$	3	0
$\mathrm{M}(\mathrm{AA})(\mathrm{BC}) \mathrm{de}$	10	5
$\mathrm{M}(\mathrm{AB})(\mathrm{AB}) \mathrm{cd}$	11	5
$\mathrm{M}(\mathrm{AB})(\mathrm{CD}) \mathrm{ef}$	20	10
$\mathrm{M}(\mathrm{AB})_{3}$	4	2
$\mathrm{M}(\mathrm{ABA}) \mathrm{cde}$	9	3
$\mathrm{M}(\mathrm{ABC})_{2}$	11	5
M (ABBA) ${ }^{\text {d }}$ d	7	3
$\mathrm{M}(\mathrm{ABCBA}) \mathrm{d}$	7	3

주: 대문자로 표기된 리간드는 킬레이트 리간드이고, 소문자로 표기된 것은 한 자리 리간드이다.

Isomerism - Stereoisomers

Number of possible Isomers

facial
 meridional

Isomerism - Stereoisomers

Number of possible Isomers

Isomers of Ma_{2} bcde $\left(\mathrm{O}_{\mathrm{h}}\right)$

Handedness of chelate Rings

그림 9-12 오른쪽손과 왼쪽손 성질을 가지는 프로펠러들. (a) 왼 손성(left-handed) 프로펠러와 날 끝 부분의 궤적에 의해 만들어진 나 선 모양. (b) 오른손성(right-handed) 프로펠러와 날 끝부분의 궤적에 의해 만들어진 나선 모양.

Isomerism - Stereolsomers:
Combination of Chelate Rings (\wedge, Δ)
[Co(en) $3^{3^{++}}$

그림 9-13 왼쪽성 (Λ) 과 오른쪽성 (Δ) 의 킬레이트

Isomerism - stereolsomers: Combination of Chelate Rings (\wedge, Δ)

Procedure for Determining Handedness

그림 9-14 손대칭성을 결정하는 방법.

1. 분자를 돌려서 뒤쪽의 삼각형 관계 에 있는 3 개의 N (중심 금속과 점선 으로 연결되어 있음) 중 윗부분의 2 개가 고리를 형성하도록 위치시킨 다.
앞쪽 3 개의 N (중심 금속과 꺽쇠 표 시로 연결되어 있음)에 의해 만들어 진 삼각형만을 태엽을 감듯이 회전 시켜 앞과 뒤의 삼각형이 겹쳐지는 삼각기둥(trigonal prism) 모양을 만드 는 것을 상상한다.
태엽을 감듯 힘을 준 손을 놓았을 때 원래의 모습으로 돌아가는 회전 방향이 반시계 방향이면 람다(lamda, ^) 이성질체이고, 원래의 모습으로 돌아가는 회전 방향이 시계 방향이 면 델타 (delta, Δ) 이성질체이다.

Λ

$=$

Δ

Isomerism - Stereoisomers:
 Combination of Chelate Rings (\wedge, Δ)

CoEDTA-

Not coplanar, not connected at the same atom

Δ

$\wedge \Delta \wedge, \wedge \wedge \Delta$, or $\Delta \wedge \wedge$
isomerism - stereoisomers: Lighad Ring Conformation

6 CN ; Octahedron, Triethylentetraamine

Isomerism - stereoisomers: Lignad Ring Conformation

Chelate Ring Conformation (λ, δ)

Ex) ethylenediamine (en): 1st line - conneting atoms bonded to the metal 2nd line - conneting two carbon atoms

1st \rightarrow 2nd : counterclockwise $\rightarrow \lambda$
1st \rightarrow 2nd : clockwise $\rightarrow \delta$

그림 9-16 킬레이트 고리의 뒤

 틀림 구조들.
λ
δ
$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
$\Delta \lambda \lambda \lambda-\left[\operatorname{Co}(\mathrm{en})_{3}\right]^{3+}$
$\Delta \delta \delta \delta-\left[\operatorname{Co}(\mathrm{en})_{3}\right]^{3+}$
more stable in calculation
actually, in solution $\lambda \leftrightarrow \rightarrow \delta$ intercoversion in soln, $\delta \delta \lambda$ is most abundant in Λ form

Isomerism - stereoisomers: Lighad Ring Conformation

6 CN ; Octahedron, Triethylentetraamine

Chelate Ring Conformation (λ, δ)

그림 9-17 트랜스- $\left[\mathrm{CoX}_{2} \text { (trien) }\right]^{+}$ 의 카이랄 구조.

$\lambda \lambda$

Hydrate Isomers

Hydrate Isomers: having water as either a

 ligand or an added part of the crystal structure
blue-green

Ionization Isomerism

Ionization Isomers: Exchange of ions between inside and outside coordination sphere

Coordination Isomers: require at least two metal

$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{2+}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{2-}$
$\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{2+}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{2-}$
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\left[\mathrm{PtCl}_{6}\right]^{2-}$
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+}\left[\mathrm{PtCl}_{4}\right]^{2-}$

Linkage Isomers: Compounds containing

 ambidentate ligand
thiocyano
(a)
isothiocyano
thiocyanate

(b)
nitrite

Isomerism - separation ana Identification of Isomers

```
Separation
Fractional Crystalization - packing, solubility, size, charge
Chiral Isomers
Resolution - chiral counterions
Identification
X-ray crystallography
Optical rotatory dispersion (ORD)
Circular dichroism (CD)
```


Coordination Numbers and Structures

Structures vs Properties.

Factors for Structures

1. Number of Bonds

Bond formation is usually exothermic.
So stability
2. VSEPR
3. Occupancy of d orbitals

Square-planar vs Tetrahedral
4. Steric Effects
5. Crystal Packing Effects

Crystalline Lattice vs Solution
What is common thing?
Which one is a dominant factor?

CN	Geometries
1	Rare
2	Linear
3	Trigonal-plane
4	Tetrahedron, Square-plane
5	Trigonal bipyramid, Square pyramid
6	Octahedron, Trigonal prosm
7	Pentagonal bipyramid, Capped trigonal prism, Capped octahedron
$8 \leq$	Known up to 16 CN

Coordination Numbers and Structures

Oxidation States of Transition Metals

	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
≤ 0			0	O	O	0	0	O	0	
+1			0	O	O	0	O	O	O	
+2		O	O	O	O	O	O	0	O	O
+3	O	O	0	O	O	O	O	O	O	
+4		0	0	O	O	0	O	O		
+5			O	0	0	\triangle	0			
$+6$				O	0	0				
+7					O					

O : most common

Cooraination Numbers ana structures CN = 1,2, and 3

$\mathrm{CN}=1$, Rare

cooraination inumbers and structures CN = 1,2, and 3

CN = 2, Rare, Linear ($\mathrm{D}_{\text {oh }}$) Mostly d ${ }^{10}$ metals, $\mathrm{Ag}(\mathrm{I}), \mathrm{Cu}(\mathrm{I}), \mathrm{Au}(\mathrm{I}), \mathrm{Hg}(\mathrm{II})$ d^{5}, d^{6}, d^{7}

Examples of $\mathrm{CN}=2$

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{~N}-\mathrm{Ag}-\mathrm{NH}_{3}{ }^{+} \\
\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{-} \\
\mathrm{NC}-\mathrm{Hg}-\mathrm{CN} \\
\mathrm{CN}-\mathrm{Au}-\mathrm{CN}^{-}
\end{gathered}
$$

$\left[\mathrm{Mn}\left(\mathrm{N}\left(\mathrm{SiMePh}_{2}\right)_{2}\right)_{2}\right]$

Large Ligands can induce a linear arrangement

La	Ce	Pr	Nd
89	90	91	92
	Th	Pa	U

Pm
93

Cooraination Numbers ana structures

 $\mathrm{CN}=1,2$, and 3
$\mathrm{CN}=3$, Rare, Trigonal planar $\left(\mathrm{D}_{3 \mathrm{~h}}\right)$
 Mostly d^{10},
 $\mathrm{PPh}_{3}, \mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{2}$
 Bulky enough, Steric effect vs Electroic structure

그림 9-24 $\quad \mathrm{K}_{2} \mathrm{Au}_{2} \mathrm{P}_{2} \mathrm{Se}_{6}$, 세 가지 서로 다른 구조를 가지는 Au 을 포 함하는 화합물. 검은색 표시된 구, Au ; 큰 무색 구, Se ; 작은 무색 구, P. $\left[\mathrm{P}_{2} \mathrm{Se}_{6}\right]^{4-}$ 이온이 $\mathrm{Au}(\mathrm{I})$ 이온을 선형과 삼각형 구조로 연결하고 $\mathrm{Au}($ III) 이온을 평면사각형 구조로 연결한다. 이 구조는 긴 사슬 모양 을 하면서 K^{+}이온을 포함하는 긴 채널(channel)을 이루면서 적층 되며 결정을 이룬다.
(K. Chordroudis, T. J. McCarthy, 그 리고 M. G. Kanatzidis 의 Inorg Chem. 1996, 35,3451 에서 발췌함)

CN = 4, Tetrahedral (T_{d}) Squre-planar $\left(D_{4 h}\right)$

 Tetrahedral (T_{d}) ; very common,그림 9-25 정사면체 구조를 가 지는 착화합물들.

$\mathrm{BF}_{4}{ }^{-}$

$\mathrm{Ni}(\mathrm{CO})_{4}$

$\left[\mathrm{Cu}(\mathrm{py})_{4}\right]^{+}$

Cooraination Numbers ana structures

 $\mathrm{CN}=4$
CN = 4, Tetrahedral (T_{d}) Squre-planar $\left(D_{4 h}\right)$

 Squre-planar($\mathrm{D}_{\text {4h }}$) ; mostly d ${ }^{8}$ ($\mathrm{Pd}(I I), \mathrm{Pt}(\mathrm{II}), \mathrm{Ni}(I I), \mathrm{Ag}(I I I)$, Ir(I) Rh(I))

(b)

* Actinides: 89

\#.........:...........Uug........................: Uus :........:

65 Tb	66 Dy	67 H 0	68 Er	69 Tm	70 Yb	71 Lu
97	98	99	100	101	102	103

Tetrahedral vs Square-planar
Counterion, Crystal Packing

$\Delta \mathrm{E}$ is not big.

$\left[\mathrm{NiBr}_{2}\left(\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]}\right.\right.$: both T_{d} and $\mathrm{D}_{4 \mathrm{~h}}$ in the same crystal

Cooraination Numbers ana structures

 $\mathrm{CN}=5$
$\mathrm{CN}=5$, Trigonal bipyramid $\left(\mathrm{D}_{3 \mathrm{~h}}\right)$, Square pyramid ($\left.\mathrm{C}_{4 \mathrm{v}}\right)$

Fluxional behavior.

(a)

(b)

Cooraination inumpers ana structures

 $\mathrm{CN}=6$
CN $=6$, Octahedral $\left(\mathrm{O}_{h}\right)$ most common

그림 9-28 정팔면체 구조의 착 화합물들.

잡아당김 눌려짐
O_{h} to $\mathrm{D}_{4 \mathrm{~h}}$

그림 9-29 정팔면체의 사각형 일그러짐.

Cooraination Numbers ana structures

 $\mathrm{CN}=6$
$\underline{C N}=6$, Octahedral $\left(O_{h}\right)$ to Trigonal Prism $\left(D_{3 h}\right)$

trigonal elongation
: trigonal antiprism $\left(\mathrm{D}_{3 \mathrm{~d}}\right)$: trigonal prism $\left(\mathrm{D}_{3 \mathrm{~h}}\right)$

π Interactions between adiacent sulfur atoms

CN = 7, Pentagonal bipyramid $\left(\mathrm{O}_{\mathrm{h}}\right)$, Capped trigonal prism, Capped octahedron

Capped trigonal prism
Pentagonal bipyramid
Capped octahedron Different counterion, steric requirment

Cooraination Numbers ana structures

 CN = 8
CN = 8, Square antiprism, Dodecahedron

Eight coordination is rare in the first row transition metals

Why?

Central ion must be

 large in order to accommodate eightcoordinationSquare antiprism

(a)

Dodecahedron

(b)

(c)

Cooraination numpers and structures

 $C N \geq 8$
CN ≥ 8, known up to 16 , not common

그림 9-33 큰 배위수를 가지는 배위 화합물들. (a) $\left.\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)\right)_{6}\right]^{3-}$, 나 이트레이트(nitrate) 리간드가 두 자 리 리간드로 결합. (T. A. Beinnecke 와 J. Delgaudio의 Inorg. Chem. 1968, 7, 715에서 발 췌함) (b) [ReH9]2-, 덧씌운 삼각 프리즘 (capped trigonal prism) 구조. (S. C. Abrahams, A. P. Ginsberg, 그리고 K. Knox 의 Inorg. Chem. 1964, 3, 558에 서 발췌함)

(a)

(b)

Multimetallic Compexes

Without direct M-M bond

With direct M-M bond

(d)

