Chapter 13 Organometallic Chemistry

13-1 Historical Background

13-2 Organic Ligands and Nomenclature

13-3 The 18-Electron Rule

13-4 Ligands in Organometallic Chemistry

13-5 Bonding Btween Metal Atoms and Organic π Systems

13-6 Complexes Containing M-C, M=C, and M \equiv C Bonds

13-7 Spectral Analysis and Characterization of Organometallic Complexes

"Inorganic Chemistry" Third Ed. Gary L. Miessler, Donald A. Tarr, 2004, Pearson Prentice Hall http://en.wikipedia.org/wiki/Expedia

13-1 Historical Background

Sandwich compounds

그림 13-2 뭉치 화합물의 예.

Other examples of organometallic compounds

그림 13-3 유기금속 화합물의 다른 예.

Organometallic Compound

Organometallic chemistry is the study of chemical compounds containing <u>bonds between carbon and a metal</u>.

Organometallic chemistry combines aspects of inorganic chemistry and organic chemistry.

Organometallic compounds find practical use in <u>stoichiometric</u> and <u>catalytically</u> active compounds.

Electron counting is key in understanding organometallic chemistry. The <u>18-electron rule</u> is helpful in predicting the stabilities of organometallic compounds. Organometallic compounds which have 18 electrons (filled s, p, and d orbitals) are relatively stable. This suggests the compound is isolable, but it can result in the compound being inert.

13-1 Historical Background

Staggered rings Eclipsed rings Skew rings

13-2 Organic Ligands and Nomenclature

Ligand	Name	Ligand	Name
со	Carbonyl		Benzene
=c	Carbene (alkylidene)		Denzene
≡c-	Carbyne (alkylidyne)		1,5-cyclooctadiene (1,5-COD) (1,3-cyclooctadiene complexes are also known)
$\langle 0 \rangle$	Cyclopropenyl (cyclo-C ₃ H ₃)	$H_2C = CH_2$	Ethylene
\vee		HC≡CH	Acetylene
\wedge	Cyclobytadiana (cyclo C H)		π -Allyl (C ₃ H ₅)
\bigtriangledown	Cyclobutadiene (<i>cyclo</i> - C_4H_4)	$-CR_3$	Alkyl
	Cyclopentadienyl (cyclo-C ₅ H ₅)(Cp)		Acyl

FIGURE 13-7 Common Organic Ligands.

13-2 Organic Ligands and Nomenclature

Number of Bonding Positions	Formula	Name	
1	η^1 -C ₅ H ₅	monohaptocyclopentadienyl	M
3	η^3 -C ₅ H ₅	trihaptocyclopentadienyl	м
5	η^5 -C ₅ H ₅	pentahaptocyclopentadienyl	м

Number of Atoms Bridged	Formula
None (terminal)	CO
2	μ ₂ -CO
3	μ3 - CO

13-3 The 18-Electron Rule

; counting electrons

In main group chemistry, the octet rule

 $(\eta^5-C_5H_5)Fe(CO)_2CI$

Donor Pair method

Fe(II)		6 electrons
η ⁵ -C ₅ H ₅ ⁻		6 electrons
2 (CO)		4 electrons
Cl ⁻		2 electrons
	Total =	18 electrons

Neutral Ligand method

Fe atom		8 electrons
η ⁵ -C₅H₅		5 electrons
2 (CO)		4 electrons
C1		1 electron
	Total =	18 electrons

13-3 The 18-Electron Rule

; counting electrons

M-M single bond counts as one electron per metal

Ligand	Method A	Method E
н	2 (H ⁻)	1
Cl, Br, I	2 (X ⁻)	1
OH, OR	2 (OH ⁻ , OR ⁻)	1
CN	2 (CN ⁻)	1
CH ₃ , CR ₃	2 (CH ₃ ⁻ , CR ₃ ⁻)	1
NO (bent M-N-O)	2 (NO ⁻)	1
NO (linear M—N—O)	2 (NO ⁺)	3
CO, PR3	2	2
NH ₃ , H ₂ O	2	2
=CRR' (carbene)	2	2
$H_2C = CH_2$ (ethylene)	2	2
CNR	2	2
=0, =S	$4 (O^{2-}, S^{2-})$	2
η^3 -C ₃ H ₅ (π -allyl)	$2(C_3H_5^+)$	3
=CR (carbyne)	3	3
≡N	6 (N ³⁻)	3
Ethylenediamine (en)	4 (2 per nitrogen)	4
Bipyridine (bipy)	4 (2 per nitrogen)	4
Butadiene	4	4
η^5 -C ₅ H ₅ (cyclopentadienyl)	6 (C ₅ H ₅ ⁻)	5
η^6 -C ₆ H ₆ (benzene)	6	6
η^7 -C ₇ H ₇ (cycloheptatrienyl)	$6(C_7H_7^+)$	7

그림 13-8 Cr(CO) 의 부자 궤도할수 에너지 주위 (G_O_Spessard and G_I_Miessler, Organometallic

13-3 The 18-Electron Rule ; why 18 electrons?

 $[Zn(en)_3]^{2+}$; ?? Electron species good σ -donor bad π -acceptor e_g orbitals are not sufficiently antibonding

 TiF_6^{2-} ; ?? Electron species σ -donor π -donor What happen?

그림 13-12 CO와 N₂에 대한 분자 궤도함수의 일부분.

그림 13-13 CO와 금속 원자 간 의 σ 및 π 상호 작용.

Experimental evidence

Free CO vs M-CO

Infrared spectroscopy and X-ray crystallography

Free CO has a C-O stretch at 2143 cm⁻¹ $Cr(CO)_6$ has a C-O stretch at 2000 cm⁻¹

C-O distance 112.8 pm Metal complexes 115 pm

In general, the more negative the charge on the organometallic species, the greater the tendency of the metal to donate electrons to the π^* orbitals of CO and the lower the energy of the C-O stretching vibrations.

Complex	ν (CO), cm^{-l}
[Ti(CO) ₆] ²⁻	1748
[V(CO) ₆] ⁻	1859
Cr(CO) ₆	2000
$[Mn(CO)_6]^+$	2100
$[Fe(CO)_6]^{2+}$	2204
$\delta + \delta -$	$\delta + \delta -$
C = 0	$M^{n+} \leftarrow C \equiv 0$

The consequence is that the electrons in the positively charged complex are more equally shared by the carbon and the oxygen, giving rise to a stronger bond and a higher energy C - O stretch.

13-4 Ligands in Organometallic Chemistry ; bridging modes of CO

NOTE: ^a Asymmetrically bridging μ_2 - and μ_3 -CO are also known.

13-4 Ligands in Organometallic Chemistry ; bridging modes of CO

Terminal and bridging carbonyl ligands can be considered 2-electron donors.

13-4 Ligands in Organometallic Chemistry ; bridging modes of CO

13-4 Ligands in Organometallic Chemistry

; binary carbonyl complexes

Synthesis of binary carbonyl complexes

1. Direct reaction of a transition metal and CO

 $Ni + 4 CO \longrightarrow Ni(CO)_4$

2. Reductive carbonylations

 $CrCl_3 + 6 CO + Al \longrightarrow Cr(CO)_6 + AlCl_3$

 $\operatorname{Re}_2\operatorname{O}_7 + 17 \operatorname{CO} \longrightarrow \operatorname{Re}_2(\operatorname{CO})_{10} + 7 \operatorname{CO}_2$

3. Thermal or photochemical reaction

$$2 \operatorname{Fe}(\operatorname{CO})_{5} \xrightarrow{h\nu} \operatorname{Fe}_{2}(\operatorname{CO})_{9} + \operatorname{CO}$$

$$3 \operatorname{Fe}(\operatorname{CO})_{5} \xrightarrow{\Delta} \operatorname{Fe}_{3}(\operatorname{CO})_{12} + 3 \operatorname{CO}$$

$$\operatorname{Cr}(\operatorname{CO})_{6} + \operatorname{PPh}_{3} \xrightarrow{\Delta} \operatorname{Cr}(\operatorname{CO})_{5}(\operatorname{PPh}_{3}) + \operatorname{CO}$$

$$\operatorname{Re}(\operatorname{CO})_{5}\operatorname{Br} + \operatorname{en} \xrightarrow{\Delta} \operatorname{fac-Re}(\operatorname{CO})_{3}(\operatorname{en})\operatorname{Br} + 2 \operatorname{CO}$$

13-4 Ligands in Organometallic Chemistry ; oxygen-bonded cabonyls

13-4 Ligands in Organometallic Chemistry ; ligands similar to CO

CS, CSe Similar to CO in their bonding modes In terminal or bridging CS usually functions as a stronger σ donor and π acceptor than CO

isoelectronic; CN⁻ and N₂ CN⁻ is a stronger σ donor and a somewhat π weaker acceptor than CO CN⁻ bonds readily tp metals having higher oxidation states

N₂ is a weaker donor and acceptor than CO Nitrogen fixation

13-4 Ligands in Organometallic Chemistry ; ligands similar to CO; NO complexes

 $Co_2(CO)_8 + H_2 \longrightarrow 2 HCo(CO)_4$

trans-Ir(CO)Cl(PEt₃)₂ + H₂ \longrightarrow Ir(CO)Cl(H)₂(PEt₃)₂

 $Co_2(CO)_8 + 2 \text{ Na} \longrightarrow 2 \text{ Na}^+[Co(CO)_4]^ [Co(CO)_4]^- + \text{H}^+ \longrightarrow \text{HCo}(CO)_4$

13-4 Ligands in Organometallic Chemistry ; hydride and dihydrogen complexes

Dihydrogen complexes

Organic synthesis, catalytic reaction

Distance of H-H the metal is electron rich and donate strongly to the π^* of H₂ \rightarrow ??? with CO and NO \rightarrow ???

13-4 Ligands in Organometallic Chemistry ; ligands having extended π systems

13-4 Ligands in Organometallic Chemistry ; ligands having extended π systems

 π bonding within the ligands themselves-cyclic systems

13-4 Ligands in Organometallic Chemistry ; ligands having extended π systems

 π bonding within the ligands themselves-cyclic systems

