7. Microwave ovens heat food by the energy given off by microwaves. These microwaves have a wavelength of 5.00×10⁶nm.

(a) How much energy in kilojoules per mole is given off by a microwave oven?

$$E_{particle} = hn = h\frac{c}{l}$$

$$E = E_{particle}N_A = h\frac{c}{l}N_A = (6.626 \times 10^{-34} J \cdot s)\frac{(2.998 \times 10^8 m / s)}{5.00 \times 10^{-3} m}(6.022 \times 10^{23} mol^{-1})$$

$$= \underline{2.39 \times 10^{-2} kJ / mol}$$

(b) Compare the energy obtained in (a) with that given off by the ultraviolet rays $(\lambda \approx 100 \text{nm})$ of the Sun that you absorb when you try to get a tan.

$$E = E_{particle} N_A = h \frac{c}{l} N_A = (6.626 \times 10^{-34} J \cdot s) \frac{(2.998 \times 10^8 m / s)}{1.00 \times 10^{-7} m} (6.022 \times 10^{23} mol^{-1})$$

= 1.2×10³ kJ / mol

Much Larger!!!

PDF created with pdfFactory Pro trial version www.pdffactory.com

37. Which of the following electron configurations are for atoms in the ground state? In the excited state? Which are impossible?

(a) $1s^22s^22p^1$	Ground
(b) $1s^21p^12s^1$	Impossible (1p is not existed)
(c) $1s^22s^22p^33s^1$	Excited (Ground state is 1s ² 2s ² 2p ⁴)
(d) $1s^22s^22p^63d^{10}$	Excited (Ground state is 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²)
(e) $1s^22s^22p^53s^1$	Excited (Ground state is 1s ² 2s ² 2p ⁶)

45. Give the number of unpaired electrons in an atom of

- (a) Phosphorus [Ne] $3s^23p^3$ 3
- (b) Potassium [Ar] $4s^1$ 1
- (c) Plutonium (Pu) [Rn] $7s^2 5f^6 = 6$

49. Write the ground state electron configuration for

- (a) Mg $1s^2 2s^2 2p^6 3s^2$ Mg²⁺ $1s^2 2s^2 2p^6$
- (b) N $1s^2 2s^2 2p^3$ N³⁻ $1s^2 2s^2 2p^6$
- (c) Ti $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$ Ti⁴⁺ $1s^2 2s^2 2p^6 3s^2 3p^6$
- (d) Sn^{2+} 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰
 - $Sn^{4+} \qquad 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 4s^2 \, 3d^{10} \, 4p^6 \, 4d^{10}$

63. A carbon dioxide laser produces radiation of wavelength 10.6 micrometers (1 micrometer = 10⁻⁶meter). If the laser produces about one joule of energy per pulse, how many photons are produced per pulse?

$$1.00J = \frac{(6.626 \times 10^{-34} \, J \cdot s)(2.998 \times 10^8 \, m \, / \, s) \times N}{10.6 \times 10^{-6} \, m}$$
$$N = \frac{(1.00J)(1.06 \times 10^{-5} \, m)}{(6.626 \times 10^{-34} \, J \cdot s)(2.998 \times 10^8 \, m \, / \, s)} = \frac{5.34 \times 10^{19} \, photons}{1000}$$

67. Write the symbol of each element described below.

(a)	Largest atomic radius in Group17	At
(b)	smallest atomic radius in period 3	Ar
(c)	largest first ionization energy in Group 2	Li, Be, Ne
(d)	abbreviated electron configuration is [Ar] 4s23d3	V
(e)	A +2 ion with abbreviated electron configuration [Ar] 3d5	Mn^{2+}
(f)	A transition metal in period 4 forming 1 +2 ion with no unpaired electrons	Zn

71. Indicate whether each of the following statements is true or false. If false, correct the statement.

(a) An electron transition from n=3 to n=1 gives off energy.

(b) Light emitted by an n=4 to n=2 transition will have a longer wavelength than that from an a=5 to n=2 transition.

- (c) A sublevel of I=3 has a capacity of ten electrons.
- (d) An atom of Group 13 has three unpaired electron.

F; *I*=2 or 14e⁻ F; Group 15 or 1 unpaired e⁻

Т

Т

75. Explain why

- (a) Negative ions are larger than their corresponding atoms. The repulsion between outer eletrons make larger radius
- (b) scandium, a transition metal, forms an ion with a noble gas structure. Sc^{3+} is isoelectronic with Ar
- (c) electronegativity decreases down a group in the periodic table. Atomic radius increases → Ionization energy decreases → Elements become more metallic

80. In the photoelectric effect, electrons are ejected from a metal surface when light strikes it. A certain minimum energy, E_{min} , is required to eject an electron. Any energy absorbed beyond that minimum gives kinetic energy to the electron. It is found that when light at a wavelength of 540nm falls on a cesium surface, an electron is ejected with a kinetic energy of 2.60×10^{-20} J. When the wavelength is 400nm, the kinetic energy is 1.54×10^{-19} J.

(a) Calculate E_{min} for cesium in joules.

$$E_{540} = \frac{(6.626 \times 10^{-34} \, J \cdot s)(2.998 \times 10^8 \, m \, / \, s)}{540 \times 10^{-9} \, m} = 3.68 \times 10^{-19} \, J$$
$$E_{ejected} = E_{540} - E_{min} \Rightarrow E_{min} = E_{540} - E_{ejected}$$
$$E_{min} = 3.68 \times 10^{-19} \, J - 0.26 \times 10^{-19} \, J = \underline{3.42 \times 10^{-19} \, J}$$

(b) Calculate the longest wavelength, in nanometers, that will eject electrons from cesium.

$$I = \frac{(6.626 \times 10^{-34} \, J \cdot s)(2.998 \times 10^8 \, m \, / \, s)}{3.42 \times 10^{-19} \, J} = 5.81 \times 10^{-7} \, m = \underline{581 nm}$$

PDF created with pdfFactory Pro trial version www.pdffactory.com